FOTRMONO

OPERATOR'S MANUAL

GPS NAVIGATOR

MODEL GP-500 MARK-2

© FURUNO ELECTRIC CO., LTD.

9-52, Ashihara-cho, Nishinomiya, Japan

Telephone: 0798-65-2111 Telefax: 0798-65-4200

All rights reserved. : Printed in Japan

FIRST EDITION : JAN 1993
R : SEP. 1, 1999

\triangle
 SAFETY INSTRUCTIONS

"DANGER", "WARNING" and "CAUTION" notices appear throughout this manual. It is the responsibility of the operator and installer of the equipment to read, understand and follow these notices. If you have any questions regarding these safety instructions, please contact a FURUNO agent or dealer.

\triangle DANGER

This notice indicates a potentially hazardous situation which, if not avoided, will result in death or serious injury.

\triangle WARNING

This notice indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

This notice indicates a potentially hazardous situation which, if not avoided, could result in minor or moderate injury, or property damage.

SAFETY INFORMATION FOR THE OPERATOR

high voltage electricity which can shock, burn or cause death. Only qualified personnel should work inside the equipment.

Do not dissasemble or modify the equipment.

Fire, electrical shock or serious injury can result.

Immediately turn off the power at the ship's mains switchboard if water or foreign object falls into the equipment or the equipment is emitting smoke or fire.

Continued use of the equipment can cause fire, electrical shock or serious injury.

WARNING Label attached

\triangle CAUTION

Do not place liquid-filled containers on the top of the equipment.

Fire or electrical shock can result if a liquid spills into the equipmtnt.

Do not place heater neat the equipment.
Heat can melt the power cord, which can result in fire or electrical shock.

Do not operate the unit with wet hands.

Electrical shock can result.
Use the correct fuse.
Use of the wrong fuse can cause fire or equipment damage.

No single navigation aid (including this unit should ever be relied upon as the exclusive means for navigating your vessel.

The navigator is responsible for checking all aids available to confirm his position. Electronic aids are interded to assist, not replace, the navigator.

A WARNING A	
To avoid electrical shock, do not remove cover. No user-serviceable parts inside.	
A	- - A
Name:	Warning Label (1)
Type	86-003-1011-0
Code No.	100-236-230

SAFETY INFORMATION FOR THE INSTALLER

\triangle WARNING

 Only qualified personnel should work inside the equipment.
 This equipment uses high voltage electricity which can shock, burn, or cause death.

Turn off the power at the ship's mains switchboard before beginning the installation. Post a warning sign near the switchboard to ensure that the power will not be applied while the equipment is being installed.

Serious injury or death can result if the power is not turned off, or is applied while the equipment is being installed.

\triangle CAUTION
 Ground the equipment.
 Ungrounded equipment can give off or receive electromagnetic interference or cause electrical shock.

Confirm that the power supply voltage is compatible with the voltage rating of the equipment.

Connection to the wrong power supply can cause fire or equipment damage. The voltage rating appears on the label at the rear of the equipment.

TABLE OF CONTENTS

TABLE OF CONTENTS BY MENU

Features ix
How to Use this Manual x
INTRODUCTION TO GPS 1-1
What is GPS? 1-1
Position-fixing accuracy (HDOP) 1-1
BASIC OPERATION 2-1
The Keyboard 2-2
Key description 2-2
Keyboard response conventions 2-3
Basic Operating Procedures 2-4
Turning the power on and off 2-4
Adjusting illumination and backlighting 2-4
Entering numeric data 2-4
Changing latitude and longitude coordinate 2-4
Clearing data 2-4
Terminating keyboard input 2-4
The Main Menu 2-5
Menu description 2-5
Basic menu operation 2-6
Basic Start-up 2-8
Turn on the power 2-8
Enter your estimated position 2-8
Enter antenna height 2-9
How to Read the Display 2-11
Saving Present Position 2-15
Man overboard position 2-15
Present position 2-15
Automatic position saving 2-16
Viewing Saved Positions 2-17
WAYPOINT NAVIGATION 3-1
Registering Waypoints and Displaying Waypoint List 3-2
By latitude and longitude 3-2
By present position 3-5
By previously saved position 3-5
By range and bearing 3-6
By LOP 3-7
Displaying the waypoint list 3-7
Waypoint Navigation 3-9
Specifying present position as FROM waypoint 3-9
Specifying registered waypoints as FROM and TO waypoints 3-10
Canceling waypoint navigation 3-10
Navigation and steering information 3-11
Calculating Range and Bearing Between Two Points 3-17
Calculating TTG and ETA Between Two Points 3-19
ROUTE NAVIGATION 4-1
Creating a Route 4-2
Deleting a Route and Route Contents 4-3
Registering Route 00 4-5
Following a Route 4-8
Selecting a route 4-8
Connecting routes 4-10
Canceling route navigation 4-11
MISCELLANEOUS FUNCTIONS 5-1
Selecting Geodetic Chart System 5-2
Standard GPS chart system 5-2
Chart systems stored in this unit 5-2
Selecting chart system 5-2
Entering Magnetic Variation 5-4
Changing Units of Measurement and Display Indications 5-5
Selecting Back-up Navigator 5-7
Initial Settings 5-9
Differencial GPS 5-17
Initial settings 5-17
Data receiving status 5-19
Default Settings 5-20
Timer, Stopwatch and Wake-up 6-2
Description 6-2
Selecting timer or stopwatch 6-2
Starting the stopwatch 6-3
Starting the timer 6-4
Anchor Watch, Arrival, Cross Track Error, Border, Speed, \& Trip Alarm 6-5
Alarm description 6-5
How to set the alarms 6-6
Alarm Display 6-10
Alarm indications 6-10
Error indications 6-11
Displaying Full Alarm/Error Indication 6-12
No alarm 6-12
Alarm indication 6-12
System alarm 6-14
TROUBLESHOOTING 7-1
Troubleshooting 7-2
Satellite Receiving Condition (SV Display) 7-4
Future Satellites Display $7-5$
Testing the Unit for Proper Operation 7-6
Self test 7-6
Keyboard test 7-8
Clearing the Memory 7-9
Clearing all memories 7-9
Clearing data memories 7-9
Cold Start 7-11
INSTALLATION 8-1
Display Unit Installaion 8-1
Antenna Unit Installation 8-2
Connections on the Display Unit 8-5
Entering Initial Data 8-6
Entering estimated latitude and longitude, antenna height 8-6
Selecting back-up navigator 8-7
Selecting speed log and gyrocompass 8-9
Selecting communication format 8-11
Autopilot connection 8-18
Connecting DGPS Beacon Receiver 8-20
Interface Doucumentation 8-21
"DATA IN" port 8-21
"DATA OUT" port 8-23
"DATA IN/OUT" port 8-25

APPENDIX

Specifications A-1
Time Differences A-3
Geodetic Chart Systems A-4
Loran C/A Chains A-5
Decca Chains A-6
Equipment Lists A-7
DRAWINGS
Interconnection Diagram S-1
Schematic Diagrams S-2
Outline Drawings (Display Unit, Antenna Unit) D-1
INDEXIDX-1
Declaration of conformity to type

Table of Contents by Menu

0 INIT DATA(1)

Page
$2-8, ~ 8-16$

1 TIMER
L START
3-3, 6-4
2 TIMER SET

3 WAYPOINT

5 ROUTE

0:ROUTE PLAN
 4-2

1:ROUTE SELECT 4-82:ROUTE CONNECT4-10

6 ALARM

- 0:ALARM ANCHOR WATCH/ARRIVAL ACTIVATE XTE/BORDER ACTIVATE
- ALARM BUZZER
- MAX SPEED 6-6
- MIN SPEED
- TRIP RANGE
- MONITOR
NAV ALARM BUZZER 3-16, 6-13
7 FUTURE SATELLITE $7-5$

8 DIFFERENTIAL DATA

9 SYSTEM DATA

9 SYSTEM DATA

FOREWORD

Congratulations on your choice of the FURUNO GP-500 MARK-2 GPS Navigator. We are confident you will see why the FURUNO name has become synonymous with quality and reliability.

For over 40 years FURUNO Electric Company has enjoyed an enviable reputation for innovative and dependable marine electronics equipment. This dedication to excellence is furthered by our extensive global network of agents and dealers.

Your unit is designed and constructed to meet the rigorous demands of the marine environment. However, no machine can perform its intended function unless properly installed and maintained. Please carefully read and follow the installation, operation and maintenance procedures set forth in this manual.

We would appreciate hearing from you, the end-user, about whether we are achieving our purposes.

Thank you for considering and purchasing FURUNO equipment.

NOTICE: No single navigational aid (including this unit) should ever be relied upon as the exclusive method for navigating your vessel. The navigator is responsible for checking all aids available to confirm his position. Electronic aids are meant to assist the navigator.

Features

The GP-500 MARK-2 consists of two units: an antenna unit and a display unit. The high sensitivity, eight channel receiver tracks up to eight satellites simultaneously. An 8 -state Kalman filter ensures optimum accuracy in determination of vessel position, course and speed.

Navigation data is presented on a 240×64 dot matrix backlit LCD. Data shown are ship's position in latitude and longitude, speed and course, range and bearing to a waypoint, etc.

In most cases the operator need do no more than turn on the power to find his or her position.

The unit operates from any 10 to 40 Vdc power supply. $100 \mathrm{~V}, 110 \mathrm{~V}, 200 \mathrm{~V}$ or 220 Vac, $50 / 60 \mathrm{~Hz}$ operation also is available by an optional rectifier. Power consumption is 12 W .

The GP-500 MARK-2's compact size belies the multitude of features contained inside. The main features are as follows.

- Compact display unit permits installation where space is limited
- Comprehensive display of navigation data
- Storage for up to 200 waypoints
- Reception of data from DGPS beacon receiver in RS-232C or RS-422
- Navigation planning from/to waypoint or routes
- Alarm functions -- Arrival alarm, Anchor Watch alarm, Cross Track Error alarm, Border alarm, Ship's Speed alarm, Trip alarm
- Man overboard feature records latitude and longitude coordinates at time of man overboard and provides continuous updates of the range and bearing to that point
- Built-in self diagnosis

How to Use this Manual

This manual is laid out in as "user-friendly" a manner as possible. A sophisticated instrument such as this, with its many, many functions can be very intimidating to the first-time user. It is our intention to guide the user along in the use of the gear as gently and as comfortably as possible in a series of sections that start a very basic level and proceed forward in complexity in a logical manner.

This manual is arranged as follows:
Chapter 1 provides an introduction to GPS.
Chapter 2 covers basic operations. In most cases all you need to do to fix your position is turn on the power.

Chapter 3 explains waypoint navigation. A waypoint is the most basic information required to find information such as range and bearing from your vessel to a point.

Chapter 4 provides the information necessary for route navigation. A route is a sequence of waypoints leading to your ultimate destination.

Chapter 5 covers miscellaneous functions, such as how to enter earth's magnetic variation and how to display position in Loran TDs.

Chapter 6 describes the alarm functions.
Chapter 7 provides troubleshooting information. Whenever you feel your unit is not operating properly, refer to this chapter.

Chapter 8 covers installation.
The Appendix contains specifications, time differences map, geodetic chart systems stored in this unit, etc.

INTRODUCTION TO GPS

What is GPS?

GPS is an acronym meaning Global Positioning System. GPS (sometimes referred to as NAVSTAR) is a highly precise satellite navigation system developed by the U.S. Department of Defense.

When full global coverage becomes available, a constellation of 24 satellites emplaced in nearly 20,000 -kilometer high 12 -hour circular orbits will provide highly precise, continuous, worldwide, all-weather position plus time and velocity information to GPS receiver-equipped vehicles, vessels and aircraft.

Figure 1-1 The orbits of GPS satellites

The GPS receiver's position is continuously fixed by receiving 3 (or 4) satellites in line-of-sight of the GPS receiver. The basic steps in position fixing are as below.

1. GPS satellites continually transmit their own precise orbital data called ephemeris. The GPS receiver computes satellites' position by this data.
2. The GPS receiver measures very accurate distance to the satellites.
3. Satellite locations and their distances from the GPS receiver are known. The GPS receiver fixes its own position by triangulation.

Figure 1-2 How the GPS receiver finds its position

Position-fixing accuracy (HDOP)

In radar position-fixing, most accurate position fixes are obtained when the targets used are spaced nearly 90 degrees from each other. Similarly, GPS position fixing accuracy is subject to satellite location. Generally, the further apart the satellites are from one another, the greater the position-fixing accuracy.

For example, take a look at Figure 1-3. In both situations a fix is obtainable in the Northern Pacific region because three satellites are in line-of-sight. However, accuracy will be higher in the right-hand figure since the satellites are spread farther apart than the satellites in the left-hand figure.

LOW ACCURACY

HIGH ACCURACY

Figure 1-3 Satellite positions and accuracy of position fix
The index for position-fixing accuracy is known as HDOP (Horizontal Dilution of Precision). In simpler terms it is the geometrical relationship among 3 (or 4) satellites. The higher the HDOP value the less accurate the position fix. The error in distance is proportional to the HDOP value as shown in Figure 1-4.

Figure 1-4 HDOP rate and position error

- NOTE: In this manual HDOP is referred to as DOP.

BASIC OPERATION

This chapter provides basic operating information, from turning on the power to saving present position.

The first time the GP-500 MARK-2 is turned on it needs about 2 minutes to fix its position. This is because there is no almanac stored in the unit. Subsequent power applications require about 20 seconds.

If the position displayed when turning on the power is more than 10 degrees (about 600 miles) different from your actual position you should enter your estimated position, to find your -exact position much quicker.

The Keyboard

The keyboard consists of 30 color-coded keys. Each time you press a key the associated reaction can be seen on the screen almost immediately.

Figure 2-1 GP-500 MARK-2 Display Unit

Key description

Table 2-1 describes the function of each key.
Table 2-1 Key description

Key	Function
MENU	Display menu.
0 to 9	Enter numeric data.
$\mathbf{\Delta \nabla}$ (Arrow)	Set cursor on line where to enter data.
CLR	Clear wrong or previously entered data.
$+/-$	Change coordinate from North to South, East to West, or vice versa.

Key	Function
ENT	Terminate keyboard input.
PWR	Turn on the power.
OFF	Press together with PWR to turn power off.
DIM	Adjut keyboard backlighting and LCD brightness.
SPD CRS	Display speed and course.
RNG BRG	Display range and bearing from present position to TO waypoint.
XTE	Display cross track error from present position to TO waypoint.
SET DFT	Display speed and direction of water current.
TTG	Display time-to-go (and estimated time of arrival) from FROM waypoint to TO waypoint.
FR/TO	Select FROM and TO waypoints.
WPT	Register waypoint.
SAVE	Save present position.
RCL	Display saved position.
ALM MSG	Display alarm source.
MOB	Mark man overboard position.

Keyboard response conventions

Each time you press a key the unit emits a beep tone according to operation executed.

- High tone beep -- Key input accepted.
- Low tone beep -- Invalid key input.

Basic Operating Procedures

Turning the
power on
and off \quad To turn the power on, press the PWR key.

Adjusting Press the DIM key to adjust the backlighting of the keyboard illumination and backlighting
Entering \quad Press numeric keys 0-9.
numeric data
Changing
latitude and
longitude

coordinate \quad Press to change North to South, East to West, or vice versa. \quad\begin{tabular}{ll}

Clearing data \& | Before entering any data you press the CLR key to clear |
| :--- |
| previous data. This key can also be used to clear wrong data. |

\hline
\end{tabular}

Terminating Press the ENT key. keyboard input

The Main Menu

Many functions of the GP-500 MARK-2 are carried out through the main menu. Press the MENU key to display the main menu. The main menu consists of nine sub menus, numbered 0 through 9 .

M E N U

```
SELECT NUMBER:0~9
```

 0: । NITIAL DATA (1)
 1: T I MER
 2: TIMER SET 7:FUTURE
3: WAYPOINT
4:VOYAGE PLAN 9:SYSTEM DATA
5: ROUTE
6: ALARM
SATELLITES
8: D IFFERENTIAL DATA

Figure 2-2 Main menu

Menu description

Table 2-2 provides a brief description of the menus.
Table 2-2 Menu description

Menu	Function		
0: INITIAL DATA (1)	Enter initial setting such as estimated position and antenna height.		
1: TIMER	Start the timer/stopwatch.		
2: TIMER SET	Preset timer/stopwatch and wake-up time.		
3: WAYPOINT	Register waypoints.		
4: VOYAGE PLAN	Determine the shortest course between two waypoints.		
5: ROUTE	Register and select route.		
6: ALARM	Preset alarm ranges.		
7: FUTURE			
SATELLITES	Display satellite schedule.		
8: DIFFERENTIAL			
DATA			Enter DGPS data.
:---			
Display DGPS receive status.			

Basic menu operation

The procedure which follows describes how to select a menu and enter data on a menu display.

1) Press the MENU key.
```
    MENU
SELECT NUMBER:0~9
    0:IN|T|AL DATA(1)
5:ROUTE
1:T IMER
2:TIMER SET
3:WAYPOINT 8:DIFFERENTIAL DATA
4:VOYAGE PLAN 9:SYSTEM DATA
```

Figure 2-3 Main menu
2) Enter menu number with numeric keys. For example, press 0 for the INITIAL DATA (1) menu. The menu shown in Figure 2-4 appears.

Figure 2-4 INIT DATA (1) menu
3) Press \triangle and \square keys to select line where you want to enter data. To enter latitude on the "LAT" line, for example, press \square three times to set the cursor on the LAT line. Your display should show the cursor on the LAT line, as in Figure 2-5.

Figure 2-5 INIT DATA (1) menu
4) Press appropriate numeric keys to enter data. For example, to enter $5^{\circ} 21.34^{\prime}$ South latitude, press the following keys.

CLR 05 2 1 13 4 +/-ENT

NOTE 1: Arrow starts and stops blinking when CLR and ENT are pressed, respectively.

NOTE 2: Entry of leading zeroes is necessary.
5) To enter data elsewhere on the current screen, press Δ or ∇ to select line, and then enter data.

To escape, press MENU or any blue key.

Basic Start-up

Once initial settings are entered you need do no more than turn on the power to fix your position. If initial settings have not been entered, enter them by referring to the installation chapter.

Turn on the power

Press the PWR key to turn on the power. If this is the initial power application after installation the unit takes between 2 and 3 minutes to find its position. Subsequent power applications require about 20 seconds.

- When you turn on the power, "PF" (Power Failure) appears and blinks on the display. This does not mean equipment trouble. It will disappear upon pressing a key.
- If "BACK UP DATA ERROR" appears, see page 6-15.

Enter your estimated position

This is normally not required. If your position is more than 10 degrees different from the displayed position, however, enter your estimated position (within 10 degrees) as follows.

1) Press SPD CRS to confirm position. Then, press MENU and 0 .

Figure 2-6 INIT DATA (1) display (first page)
2) Press ∇ three times to advance the cursor to the LAT line.
3) Enter estimated latitude by pressing the following keys.

4) Press the ENT key.
5) Press ∇.
6) Enter estimated longitude by pressing the following keys.

7) Press the ENT key.

Enter antenna Correct input of the antenna height above the waterline is height essential for accurate determination of position. If not already entered, enter it as follows.
8) Press the ∇ twice to advance the cursor to the ANTENNA HEIGHT line.

Figure 2-7 INIT DATA (1) display (second page)
9) Enter antenna height above the waterline in meters, using four digits. If the height is 15 meters, for example, press CLR 015.
10) Press the ENT key.
11) Press the SPD CRS key to return to the position display.

The display shows "C ST," "ACQ" and " 2 D " in that order.
" 2 D " is short for two-dimensional and appears when position information is reliable. It appears about 20 seconds after turning on the power in daily start-up.

NOTE 1: "MASK ELEVATION" on the INIT DATA (1) display should not be changed. The default setting of 5 degrees provides excellent performance under all conditions. Adjustment may greatly lessen available GPS position fixing time.

NOTE 2: Input of time and date is not necessary. When you receive a satellite signal the correct date and time appear on the display.

NOTE 3: You can display time in UTC or local time. (The default setting is UTC.) If you prefer local time, enter time difference between your time and UTC on the "LOCAL TIME ZONE" line. If your time is earlier than UTC enter a minus sign before entering time difference. See page $A-4$ for reference.

NOTE 4: The default setting for "POSITION MODE" is $2 D$; that is, for marine vessels. For land vehicles, change to 2D3D. At the 2D3D mode, the two-dimensional position fix (2D) and three-dimensional position fix (3D) are automatically switched according to how many satellites are in line-of-sight; three satellites for $2 D$ and four satellites for 3D. Also, when PDOP value exceeds 6 in the 3D mode, the position-fixing method is automatically changed to $2 D$.

How to Read the Display

Any one of the five keys bracketed in Figure 2-8 show position when pressed.

Figure 2-8 Keyboard, showing keys which display position

Figure 2-9 Typical position display

Detailed descriptions of items 1 through 7 in Figure 2-9 follow.
(1) Position-fixing system in use

Abbreviations	Meaning
GPS	Position fixing by GPS. The unit generates three beeps when GPS position fixing is no longer unavailable. (You can disable the buzzer if not required. More on this in a later chapter.)
GPS-A	Position fixing by dead reckoning; namely, speed log and gyrocompass.
GPS-M	Position fixing by manually entered speed and heading information.
*GPS-DR	Position fixing by satellite navigator.
*GPS-LC	Position fixing by Loran C receiver.
*GPS-LA	Position fixing by Loran A receiver.
*GPS-OM	Position fixing by Omega receiver.
*GPS-DC	Position fixing by Decca receiver.
DGPS	Position fixing by DGPS.
--- -	No external navigator connection. (No fix)

NOTE: The asterisk appears when no position correction is applied.

Cross track error

Cross track error is displayed with arrowheads. Up to ten arrowheads appear according to amount of cross track error. One arrowhead is equivalent to 0.02 nautical miles.

Course error

Course error between TO waypoint and your vessel's heading may be shown instead of cross track error. One arrowhead is equal to three degrees of course error.

To return your vessel to the intended track or course, steer in the direction indicated by the arrowheads.

Receiver status

Abbreviations	Meaning
C ST	This indication appears on the first power on after installation and means there is no almanac inside the unit. The unit automatically starts acquiring a satellite to receive the almanac. If you know a satellite which is within line-of-sight, conduct cold start as prescribed on page 7-11.
IMP	Impossible to receive. (A satellite is not available within line-of-sight.)
ACQ	The unit is acquiring a satellite. If the "ACQ" indication remains on the screen for a long time (without being replaced by ALM, 2D or 3D), suspect that the satellite is not being received normally.
ALM	The unit is receiving the almanac. According to the almanac in the GP-500 MARK- three satellites (four in case of 3D) are not yet available within line-of-sight. Since it cannot fix its position, the GP-500 MARK-2 is receiving the almanac.
2D or 3D	Two dimensional or three dimensional position fixing.
INT	Position fixing is interrupted. Objects near the GPS antenna are interrupting reception of satellites. Position fixing is resumed when lost satellite reappears.
DOP	When HDOP exceeds 4 in the 2D mode or PDOP exceeds 6 in the 3D mode, DOP value becomes abnormal and position fix is not reliable. The GP-500 MARK-2 automatically switches to the 2D mode when the PDOP exceeds 6 in the 3D mode.
Im	

(4) Position

Latitude and longitude appear in the resolution level of either 0.01 or 0.001 , depending on setting described on page $5-5$. In case of 3D position fixing mode the antenna height above the waterline also appears.

(5) Magnetic variation correction

"MAG" appears when the bearing is corrected by magnetic variation. No "MAG" means all bearings are true.

(6) Latitude and longitude correction

$\Delta \mathrm{L} / \mathrm{L}$ appears to inform you to that latitude and longitude corrections are being applied to GPS position. (The GP-500 MARK-2 applies position correction only to GPS position.)

(7) Geodetic system

"LOC" appears when a geodetic chart system other than WGS-84 is selected.

Saving Present Position

Man overboard Press the MOB key to mark man overboard position. The position display should look something like Figure 2-10.

Figure 2-10 Typical man overboard display
The unit saves the position, time and date as "999." The range and the bearing from present position to the man overboard position are continually calculated, so you can easily return there. Figure 2-11 illustrates the man overboard feature.

Figure 2-11 The man overboard feature

Present position

There will be times when you will want to save your present location on a temporary basis. (For permanent storage, register position as a waypoint. Waypoints will be dealt with in the next chapter.) For example, you have laid some crab pots, and want to return to the location at a later time.

You can save up to 20 present locations. The unit numbers the locations from 200 to 219 . If you try to save more than 20 locations, the earliest locations will be deleted, one at a time, to make room for the latest positions.

Press the SAVE key. The moment the key is pressed the position of your vessel is stored in the memory. Figure 2-12 shows a typical SAVE INTO display.

Figure 2-12 Typical SAVE INTO display
In the next chapter you will learn how to save present position as a waypoint.

Automatic This unit automatically saves the vessel's position on the hour. position It numbers these locations from 300 to 319.

Viewing Saved Positions

You may view both manually and automatically saved positions by pressing the RCL key. Each time you press the key the position saved appears in the following sequence.

$$
999 \rightarrow \bullet \cdot 201 \rightarrow 200 \rightarrow 999 \rightarrow 319 \rightarrow \bullet \cdot 300 \rightarrow 219 \rightarrow 218 \rightarrow \cdot \bullet
$$

```
->recall from=207 34*44.785
    WPT =____
    CMNT =
```


Figure 2-13 RECALL FROM display, showing manually saved position

WAYPOINT NAVIGATION

This chapter provides the information necessary for waypoint navigation. A waypoint is a particular location on a voyage, whether it be a starting point, an intermediate point or a destination point. Using a waypoint, the GP-500 MARK-2 can calculate various navigation information from the present position to the waypoint. These are

- range and bearing
- ideal course
- velocity to destination
- estimated time of arrival
- time-to-go, and
- cross track error or course error.

Registering Waypoints and Displaying Waypoint List

This unit has 199 waypoints into which you can enter position information. It numbers waypoints from 001 to 199.

Obviously, it's important that you write down your waypoints in a \log so you have a permanent record of which waypoint is which.

There are five methods by which you can enter a waypoint:

- by latitude and longitude
- by present position
- by previously saved position
- by range and bearing from a previously registered waypoint, and
- by LOP (Line of Position) values for Loran C, Loran A or Decca.

By latitude and longitude

1) Press the WPT key. The display shown in Figure 3-1 appears.

WPT $=001$

Figure 3-1 WPT display (no data)
2) Enter waypoint number (001 to 199).

CLR

3) Press the ENT key.

NOTE: If "LOCK" or "IN USE" appears on the display, this means the waypoint number is write protected or is selected as TO or FROM waypoint, respectively. For how to overwrite the waypoint number, see page 3-4.
4) Press

5) Enter latitude.

6) Select coordinate polarity, North or South, by pressing $+/$.
7) Press the ENT key.
8) Press the

9) Enter longitude.

CLR

10) Select coordinate polarity, East or West, by pressing $+/-$.
11) Press the ENT key.
12) Press the \square key. The cursor moves to "CMNT."

ABCDEFGHIJKLMNOPQRSTUVWXYZ
13) You may enter a comment to help you identify the waypoint. The comment may consist of up to eight alphanumeric characters. To enter a comment;
(1) Press the CLR key. A highlighted cursor appears on character "A."
(2) The following numeric keys serve to move the cursor. Operate them to place the cursor on the character you want to enter. If the first character of your comment is "E," for example, press the [6] key four times to select "E."

NOTE: Below are all the characters which can be entered for a comment. These characters appear on two pages. Use the [2] and [8] keys to scroll the display.

[^0](3) Press the ENT key. The character selected appears on the prompt line.
(4) Repeat steps 2 and 3 to complete the comment.
(5) Press [6] to place the cursor on "FINISH."
(6) Press the ENT key.

Figure 3-2 Typical WPT display

Write-protecting waypoints

You can write protect a waypoint as follows.
14) Press Δ or $\boldsymbol{\nabla}$ to place the cursor on the first line.
15) Enter waypoint number (001 to 199) you want to write protect as follows;

CLR + $\square \square \square$

Each press of the + key alternately displays and erases the indication "LOCK."
16) Press the ENT key.

NOTE: As noted earlier the indication "LOCK" means a waypoint is write protected and respectively. You can disable the write protection on a waypoint by entering its number and then pressing the $+/-$ key twice to erase "LOCK." "IN USE" means the waypoint is being used in waypoint navigation, or as a starting point or waypoint when following a route.

By present position
 1) Press the SAVE key. The display should look something like Figure 3-3.

Figure 3-3 Typical SAVE INTO display
2) Enter waypoint number (001 to 199), in three digits.
3) Press the ENT key.
4) Press

5) Enter a comment if desired.

By previously You can register a waypoint by using a previously saved saved position position.

```
#RECALL
    WPT=
    -_-
2 0 8
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{J} & \multicolumn{12}{|l|}{\multirow[t]{2}{*}{84.44 .2}} \\
\hline & & & & & & & & & & & & \\
\hline & \multicolumn{12}{|l|}{\[
\begin{aligned}
& \text { JANM1NT93 15:06 } \\
& \text { COMMENT: }
\end{aligned}
\]} \\
\hline
\end{tabular}
```

Figure 3-4 Typical RECALL FROM display

1) Press the RCL key several times to display the saved position you want to register as a waypoint.
2) Press
3) Enter waypoint number (001 to 199).

CLR

4) Press the ENT key.
5) Press
6) Enter comment if desired.

By range and You can enter a waypoint by using range and bearing from a bearing previously entered waypoint, or a point of which latitude and longitude are known.

1) Press MENU, 3 and 2 .

Figure 3-5 R/B TO WAYPOINT display
2) Enter starting point.
(1) To use a previously entered waypoint as starting point;

CLR $\square \square \square$ ENT

(2) To use latitude and longitude position as starting point;

CLRTI

*1: Press to change coordinate from North to South or vice versa.

*2: Press to change coordinate from East to West or vice versa.

ENT

3) Press \qquad
4) Enter waypoint number you want to register the waypoint under.

CLR $\square \square \square$ ENT

5) Press

6) Enter range from starting point to waypoint.

CLR $\square \square \square \square . \square$ ENT

7) Press

8) Enter bearing from starting point to waypoint.

NOTE 1: You can not register an intermediate waypoint on a route.

NOTE 2: To register a radar target as a waypoint, use present position "000" as starting point.

By LOP You can register a waypoint by Loran time differences (TDs) or Decca phase differences. Firstly, change to Loran or Decca LOP display as prescribed in Chapter 5. The procedure for entering LOPs is almost the same as entering latitude and longitude.

1) Press the WPT key.
2) Press the +/- key when the display is on the latitude and longitude in order to changes to LOP display.
3) The remaining procedure is the same as that for entering latitude and longitude.

Displaying the Press MENU, 3 and 0. The waypoint list appears on the waypoint list display.

Figure 3-6 Sample WAYPOINT LIST, latitude/longitude page

NOTE: Asterisk indicates write-protected waypoint.
The $+/$ key functions to alternate display of the
latitude/longitude page and the date/time page.

Figure 3-7 Sample WAYPOINT LIST, date/time page

Abbreviations used on the waypoint list

MNU … Entered manually by latitude and longitude.
CLT $\cdot \cdots$ Entered manually by range and bearing (latitude and longitude calculated).

For waypoints which are registered from saved or recalled position, the displays show the following:

GPS GPS
GDR $\cdot \cdots$ Dead reckoning using speed and heading data
DR $\cdot \cdots$. . Satellite navigator
LC. Loran C
LA Loran A
OM Omega
DC...... Decca

DGPS … Differential GPS
--- No navigator nor GPS. Also appears if position is fixed by GPS when DOP is inferior to DOP threshold.

You can scroll the waypoint list with Δ and ∇.

Waypoint Navigation

The GP-500 MARK-2 can calculate best course between two waypoints or a waypoint and present position. In addition, it calculates the following:

- the range and bearing
- ideal course
- velocity to destination
- the estimated time of arrival
- the time-to-go to arrival
- cross track error, and
- course error.

Specifying 1) Press the FR/TO key. The display should look something present position as FROM waypoint like Figure 3-8.

CLR+ENT: TURN OFF NAVIGATION
Figure 3-8 FR/TO display
2) Enter "TO" waypoint number (001 to 199), in three digits.
3) Press the ENT key.

The GP-500 MARK-2 automatically assigns present position as waypoint 000 . Then, range and bearing from present position to the TO waypoint appear on the display.


```
\(\Rightarrow \quad W P T=000 \rightarrow\)
CLR+ENT: TURN OFF NAVIGATION
```

Figure 3-9 FR/TO display
2) Press the CLR key.

CLR+ENT: TURN OFF NAVIGATION

Figure 3-10 FR/TO display
3) Enter FROM waypoint number (001 to 199).
4) Enter TO waypoint number.
5) Press the ENT key. Then, range and bearing from the FROM waypoint to the TO waypoint appear on the display.

Canceling

1) Press the FR/TO key.
waypoint navigation
2) Press the CLR key.
3) Press the ENT key. The range and bearing display appears, showing no information on the range and bearing lines.

Navigation and The GP-500 MARK-2 displays various navigation and steering steering information information when you select TO and FROM waypoints.

Cross track error

A straight line connecting the TO and FROM waypoints is called the track. It could just as well be called the intended track because although it is the navigator's intention to follow the track line, in reality, he never can do so perfectly because of wind, current, etc.

The amount your vessel is off track is called cross track error. You can display cross track error to the TO waypoint by pressing any of SPD CRS, RNG BRG, XTE, TTG or SET DFT keys.

Figure 3-11 Cross track error display and graphic interpretation of cross track error

- The number of arrowheads changes with the amount of cross track error. One arrowhead is equal to 0.02 nautical miles of cross track error.
- To return your vessel to its intended track, steer in the direction and amount indicated by the arrowheads.

NOTE: You can display course error instead of cross track error. Course error is the difference between the course and bearing. You will learn how to do this in Chapter 5.

Speed, course and velocity to destination

Press the SPD CRS key. Each time you press the key one of the following displays appears.

Figure 3-12 Typical speed and course display
When your vessel has deviated from its intended course (to the TO waypoint), there are two speed components: speed and velocity to destination.

Figure 3-13 Graphic interpretation of velocity to destination
NOTE 1: When your vessel passes the TO waypoint a negative speed is displayed as VTD. You can display range or bearing to TO waypoint instead of VTD. (See page 5-5.)

NOTE 2: The speed and course are true ones. They differ from water-tracking speed and heading which are typically measured by a speed log and a gyrocompass, respectively. Take a look at Figure 3-14. The ship's heading is due North, but the ship's
direction has deviated to three degrees, due to water current. In this case the heading is 0 degrees and the course is 3 degrees.

Figure 3-14 Heading and course
NOTE 3: When GPS position fixing is unavailable, the unit displays speed and course information taken from external navigator. If dead reckoning is selected, the speed and heading information are fed from a speed \log and gyrocompass respectively, or manually entered through the keyboard.

NOTE 4: When your vessel is cruising at extremely low speed the course reading may change by as much as 180 degrees because of minute error in speed measurement. This is not an indication of equipment trouble.

NOTE 5: Speed and course readings can be "smoothed." More on this in Chapter 5.

Range and bearing

Press the RNG BRG key.

Figure 3-15 Typical range and bearing display, showing waypoint number and range and bearing from present position to waypoint

NOTE: If you are navigating a route, the following display appears.

Cross track error and course error

Press the XTE key.

Figure 3-16 Typical XTE and course error display
A straight line connecting the FROM and TO waypoints is called the track. When your vessel is thrown off track by wind, etc., the amount in nautical miles the vessel is straying from its intended course is called the cross track error or XTE and the deviation angle is called course error. Course error is the difference between the course and bearing. You can display cross track error and course error by pressing the SPD CRS and RNG BRG keys, respectively.

Figure 3-17 Graphic interpretation of course error and cross track error

Course error is also shown by bar graph. One arrowhead on the graph is equal to three degrees of course error.

Set and drift

Press the SET DFT key.

Figure 3-18 Typical set and drift display
True velocity is measured during GPS position fixing. Relative velocity; that is, water tracking speed and heading, are fed from a speed \log and gyrocompass, respectively. The drift and set are calculated as the difference between the true and relative velocities.

NOTE 1: As a speed information, you can select speed log, manually entered speed, or NMEA 0183 data fed from an external navigator.

NOTE 2: Set and drift display is available only during GPS position fixing.

NOTE 3: Similar to course readings, set and drift readings may abruptly change when ship's speed is reduced. Chapter 5 explains how to smooth set and drift readings.

Time-to-go

Press the TTG key.

Figure 3-19 Typical TTG display
The TTG display shows the time remaining to reach the TO waypoint, maintaining current course and speed. Estimated time of arrival is also shown.

Displaying distance run

Press MENU, 6 and 1 . The distance run appears.

Figure 3-20 Distance run display

The distance run and elapsed time are reset to zero when you reset the TRIP RANGE to zero on the ALARM display. (See page 6-9.)

Calculating Range and Bearing Between Two Points

1) Press MENU, 3 and 1. The CALCULATION display appears.
CALCULATION (1)
\Rightarrow FROM
TO
WPT

$\left(\begin{array}{lllllll}(0 & 0 & 0 & \sim & 1 & 9 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 & N \\ 0 & 0 & 0 & \sim & 1 & 9 & 9\end{array}\right)$ $\begin{array}{lllll}0^{\circ} & 0 & 0.000 & W \\ 0^{\circ} & 0 & 0 . & 0 & 0\end{array} 0^{\prime} W W$
$\mathrm{LAT} / \mathrm{LONG}=0^{\circ} 00.000^{\prime} \mathrm{N}$
$0^{\circ} 00.000^{\prime} \mathrm{w}$

Figure 3-21 CALCULATION (1) display
2) Enter starting waypoint number (001 to 199).

Specifying registered waypoint as FROM waypoint

(1) Enter waypoint number (001 to 199).

CLR
 \square

(2) Press the ENT key.
(3) Press $\boldsymbol{\nabla}$ twice.

Specifying latitude and longitude as FROM waypoint
(1) Press \square
(2) CLR \square
\square
\square +4)
(3)
+ $+1=$
(4) Press the ENT key.
(5) Press V
3) Enter TO waypoint.

Specifying registered waypoint as TO waypoint.

(1) Enter waypoint number (001 to 199).

CLR

\square
(2) Press ENT.

Specifying latitude and longitude as TO waypoint.
(1) Press \square
(2)

\square $+1-1$
(3)
 미 (+/4)
(4) Press the ENT key.

The range and bearing by great circle or rhumb line calculation appear on the display.

Figure 3-22 Sample range and bearing calculation between two points

GREAT CIRCLE AND RHUMB LINE COURSES

The great circle course is the shortest path between two locations on the earth. It is usually used for long range navigation such as transoceanic voyages. To follow this course faithfully the helm must be steered continuously.

The rhumb line course is the pseudo shortest path between two locations on a chart. To follow a rhumb line course, the heading may be fixed if the distance is short.

You can select which course calculation method to use. More on this in a later chapter.

Calculating TTG and ETA Between Two Points

1) Press MENU, 3 and 3. The CALCULATION display appears.

Figure 3-23 CALCULATION (2) display
2) Enter starting waypoint number (001 to 199).

Specifying registered waypoint as FROM waypoint

(1) Enter waypoint number (000 to 199).

(2) Press the ENT key.
(3) Press twice.

Specifying latitude and longitude as FROM waypoint
(1) Press \square
(2)

(3) $\square \square \square^{\circ} \square \square \cdot \square \square \square^{\prime}(\square)$
(4) Press the ENT key.
(5) Press

3) Enter TO waypoint.

Specifying registered waypoint as TO waypoint.

(1) Enter waypoint number (000 to 199).

CLR $\square \square \square$

(2) Press ENT.

Specifying latitude and longitude as TO waypoint.
(1) Press \square
(2) $\mathbf{C L R} \square^{\circ} \square \square \cdot \square \square \square^{\prime} \quad(-+)$
(3) $\square \square \square^{\circ} \square \square \cdot \square \square \square^{\prime}(+/-)$
(4) Press the ENT key.
4) Enter ship's speed for calculation (0 knot to 999 knot).

The TTG and ETA calculation appear on the display.
\rightarrow TTA/ETA $\quad: \quad 00 \mathrm{D} 18 \mathrm{H} 32 \mathrm{M} / \mathrm{MAR} \quad 07 \quad$: $9314: 48 \mathrm{U}$

Figure 3-24 Sample TTG and ETA calculation between two points

ROUTE NAVIGATION

In many cases a trip from one place to another involves several course changes, requiring a series of route points (waypoints) which you navigate to, one after another. The sequence of waypoints leading to the ultimate destination is called a route. The GP-500 MARK-2 can automatically advance to the next waypoint on a route, so you do not have to change the destination waypoint repeatedly.

NOTE: The route planning function is a very useful and beneficial function to have available. However, the ability to switch waypoints automatically during a voyage can lead to some very dangerous situations. The use of any navigational aid requires constant exercise of common sense and caution. FURUNO Electric Company will assume no responsibility for any damages associated with use of the route navigation function.

Creating a Route

You can store up to 10 routes. The unit numbers them 01 to 10 . Each route may consist of up to 10 waypoints. Route number 00 is a special one. More on this later.

Be sure to record all important routes in a separate log. This unit is not a fail-safe record keeping device.

1) Press MENU, 5 and 0 . The ROUTE PLAN display appears.

Figure 4-1 ROUTE PLAN display
2) Enter route number.

CLR ENT

NOTE: You cannot write over or delete a route which is currently used for route navigation.
3) Press

4) Enter starting waypoint number.

CLR $\square \square \square$ ENT

5) Press
6) Repeat steps 4 and 5 to enter other waypoints for the route.

The $+/-$ key functions to alternately display comments, range from FROM waypoint and ETA from FROM waypoint.

Deleting a Route and Route Contents

Deleting a 1) Press MENU, 5 and 0 . The ROUTE PLAN display appears. route

ROUTE PLAN

ROUTENO $=03 \quad(00 \sim 10)$
SPEED $\quad=10.0 K T \quad(000.0 \sim 999.9)$
0) WPT $=013: 34^{\circ} 26.320^{\prime}, N 13513950^{\prime}, W$
$\begin{aligned} & \text { 1) } \\ & \text { 2) } W P T=027: \\ & W\end{aligned} \quad 34^{\circ} 166.623^{\prime}, N \quad 135 \quad 59 \quad 023^{\prime}, W$
$M N U$
$M N U$
$M N U$
$* L C$

Figure 4-2 ROUTE PLAN display
2) Enter the route number you want to delete.

CLR

 ENTNOTE: You cannot delete or write over a route which is currently begin used for route navigation.
3) Press CLR and ENT.

Deleting route
 1) Press MENU, 5 and 0 contents

2) Enter route number.

CLR \square ENT

3) Press Δ and $\boldsymbol{\nabla}$ to select waypoint you want to delete.

Figure 4-3 ROUTE PLAN display
In Figure 4-3, waypoint 027 will be deleted from route number 3.
4) Press CLR and ENT.

The route is reorganized excluding the waypoint deleted. (The deleted line remains blank.)

Registering Route 00

The GP-500 MARK-2 provides a navigation calculator, called voyage plan, which determines the shortest distance between two points. You specify the starting, destination and number of intermediate points. Then, the GP-500 MARK-2 calculates the great circle among waypoints and generates intermediate waypoints on the route at equal distances. The thus generated route is route 00 . This function is especially useful for long range navigation.

1) Press MENU and 4. The VOYAGE PLAN display appears.

VOYAGE PLAN

```
GFROM WPT =--- (001~199)
```



```
NO OF WPT
SPD FOR CALC
ROUTE NUMBER
=--.-KT (00.1~99.9KT)
:00
```

RESULTS

Figure 4-4 VOYAGE PLAN display
2) Enter starting waypoint number (001 to 199).

CLR
 \square ENT

3) Press ∇
4) Enter destination waypoint number (001 to 199).

CLR

\square ENT
5) Press

6) Enter number of intermediate waypoints, up to nine, in one digit from 1 to 9.

CLR ENT

7) Press

8) Enter speed to use for calculation of time-to-go.

To enter 10.5 knots, for example, press 1,0 and 5 .
9) Press ∇. The cursor is on the RESULTS line.
$10)$ Press ∇. The display shows the results of the calculation.

Figure 4-5 VOYAGE PLAN display (results)
11) Press ∇ to view automatically generated waypoints.

```
    VOYAGE PLAN(results)
    WPT (FROM)
    LAT/LONG
    RNG/BRG
    T TG
    TOTAL RNG/TIM:
    RESULTS
```

Figure 4-6 VOYAGE PLAN display (results), showing automatically generated waypoint

- The unit numbers them from P1 to P9. Further pressing of ∇ displays other automatically generated waypoints in forward order. Press the Δ key to display them in reverse order.

Modifying calculation results

If an island exists on route no. 00 , for example, you can modify the latitude and longitude of a point to avoid the island.

1) Select the point you wish to change.
2) Press Δ and ∇ to set the cursor on the LAT/LONG line.
3)

4) Press $+/-$ to change latitude coordinate, if necessary.
5) $\square \square \square^{\circ}$

6) Press $+/-$ to change longitude coordinate, if necessary. 7) Press the ENT key.

Following a Route

This section shows you how to select and follow a route. Suppose that you have registered the route shown in Figure 4-7.

Figure 4-7 Sample route
When following a route you do not have to manually change the FROM and TO waypoints; the GP-500 MARK-2 changes them automatically upon arrival at a TO waypoint.

The unit switches waypoint when your vessel enters the alarm range set for the arrival alarm. The default setting is 0.5 nautical miles. You will learn how to change the arrival alarm range in Chapter 6.

Figure 4-8 When the unit switches waypoints

```
Selecting a 1) Press MENU, 5 and 1. The ROUTE SELECT display
route
1) Press MENU, 5 and 1. The ROUTE SELECT display appears.
```


Figure 4-9 ROUTE SELECT display
2) Enter route number (00 to 10).

CLR \square ENT

3) Press \square
4) Enter direction in which to traverse the route waypoints; forward or reverse. Enter 0 for forward; 1 for reverse.

If you want to omit specific waypoints;
5) Press

6) CLR ENT

The unit recalculates the route excluding waypoint(s) disabled. It shows disabled waypoints in reverse video. If you want to enable the waypoint, enter its number as prescribed above.

```
ROUTE SELECT
\((+ノ-: \quad\) WPT UPDT)
\(\Rightarrow\) ROUTENO \(=03 \quad(00 \sim 10)\)
ROUTE NAV \(=\) FORWARD
( 1 : REVERSE 0 : FORWARD)
ROUTEO3 (000 0005 )
\(005 \rightarrow 014 \rightarrow 008 \rightarrow 045 \rightarrow 027 \rightarrow 116 \rightarrow 039 \rightarrow 112 \rightarrow 113 \rightarrow 114\)
DISABLE WPT= --
```

Figure 4-10 ROUTE SELECT display, showing disabled waypoint in reverse video

When you select a route;

Present position is registered as waypoint 000 and is the FROM waypoint. The initial TO waypoint is the first waypoint on the route.

Manual change of FROM and TO waypoints

As mentioned earlier, the FROM and TO waypoints are automatically changed when your vessel enters the arrival alarm zone. If the alarm zone range is set too tight, however, FROM and TO waypoints will not be changed. You can do it manually by displaying the ROUTE SELECT display and pressing the $+/-\mathrm{key}$.

In the display shown in Figure 4-10, for example, the present position is 000 and TO waypoint is 005 . If you press the $+/-$ key, the FROM and TO waypoints change to 005 and 014.

NOTE: Route navigation has priority over waypoint navigation.

Connecting A route may only consist of up to ten points. By combining routes routes, however, you can connect up to ten routes, maximum 100 points.

1) Press MENU, 5 and 2. The ROUTE CONNECT display appears.
```
    ROUTE CONNECT
\(\Rightarrow\) ROUTE CONNECT NUMBER ( \(00 \sim 10\) )
```



```
ROUTE CONNECT NAV = FORWARD
(1: REVERSE 0: FORWARD)
ROUTE CONNECT NAV=OFF(1:ON 0:OFF)
```

Figure 4-11 ROUTE CONNECT display
2) Press CLR.
3) Enter routes you want to connect, in navigating order.
4) Press ENT.
5) To disable a route;
(1) Press ∇. The cursor moves to DISABLE ROUTE NUMBER.
(2) Enter route number you want to disable.

CLR DENT

6) Press ∇.
7) Enter direction in which you want to traverse the route; forward or reverse.

CLR ENT

Enter 0 for forward; 1 for reverse.
8) Start navigation on connected routes.
(1) Press
∇
(2) Press CLR and 1.
(3) Press ENT. "ON" appears on ROUTE CONNECT NAV line.

Canceling
route
navigation

1) Press MENU, 5 and 1.
2) Press CLR and ENT.

This page intentionally left blank.

MISCELLANEOUS FUNCTIONS

This chapter covers miscellaneous functions. These are

- correcting chart system
- displaying magnetic bearing
- changing units of measurement and display indications
- selecting back-up navigator, and
- entering initial settings.

Selecting Geodetic Chart System

A nautical chart is usually made by either trigonometrical survey or astronomical survey and according to the geodetic chart standards of the country it is used in. For example, the USA uses the system called NAD-83; and Japan, TOKYO. Accordingly when you are getting position fixes by GPS in the USA, the system should be NAD-83 so you don't get a position fix which shows you're somewhere offshore when you're actually moored to a dock.

Standard GPS While the use of one category of chart systems is fine if you chart system don't do transoceanic voyages, ocean-going vessels may require all categories to get reliable position information. To solve this inconvenience, a standard chart system was adopted by GPS: the WGS-84. The chart default setting is for WGS-84.

Chart systems Although the WGS-84 system is now widely used other stored in this unit categories of charts still exist.

The GP-500 MARK-2 recognizes most major charts. (The charts this unit recognizes appear on page A-5 to A-8.) Select the chart system used, not the area where the boat is sailing.

Selecting chart
 1) Press MENU, 9 and 1. The DATUM SELECT display appears.
 system

Figure 5-1 DATUM SELECT display
2) Enter geodetic chart number. The display shows the six major charts of the world. You may select one of these, or any of the charts shown on pages A-5 to A-8.

NOTE: The chart selected here affects GPS position fixes only. It does not affect latitude and longitude position fed from an external navigator.

Entering Magnetic Variation

The location of the magnetic north pole is different from the geographical north pole. This causes a difference between the true and magnetic north direction. The difference is called magnetic variation, and varies with respect to the observation point on the earth. The GP-500 MARK-2 is preprogrammed with all the earth's magnetic variations. You can enter magnetic variation yourself, or let the GP-500 MARK-2 do it for you.

1) Press MENU, 9 and 4. The MAGNETIC CORRECTION display appears.
```
    MAGNET I CVARI AT ION
&AR|AT|ON =MANU (1 : AUTO O:MANU)
```

Figure 5-2 MAGNETIC VARLATION display

For automatic magnetic variation;

2) Press CLR, 1 and ENT.

The correction value is automatically calculated and displayed at the display bottom next to "MAG."

For manual magnetic variation;

1) Press CLR , 0 and ENT.
2) Press ∇
3) Enter magnetic variation, by consulting a recent nautical chart.

NOTE 1: If you have manually entered magnetic variation, be sure to change it when magnetic variation changes.

NOTE 2: To disable manual magnetic bearing display and return to true bearing, enter 000.0. (The indication " $M A G$ " is erased.)

Changing Units of Measurement and Display Indications

1) Press MENU, 9 and 5. The DISPLAY UNIT display appears.

Figure 5-3 DISPLAY UNIT display
2) Select resolution level for latitude and longitude display.

CLR ENT

Enter 1 for tenths place resolution; 0 for hundredths place resolution.
3) Press \square
4) Select method for calculation of range and bearing; great circle or rhumb line.

CLR ENT

1 for rhumb line; 0 for great circle
5) Press \square
6) Select unit for height.

CLR ENT

1 for meters; 0 for feet
7) Press ∇
8) Select unit for range and speed readouts.

1, nautical mile; 2 , kilometer; 3 , statute miles
9) Press \square
10) Select item to display on bar graph.

CLR ENT

1, No display; 2, cross track error; 3, course error
11) Press \square
12) Select item to display at top left-hand corner of the "SPD CRS" display. (See page 3-12.)

CLR ENT
1, Velocity To Destination; 2, Bearing to TO waypoint; 3, Range to TO waypoint

Selecting Back-up Navigator

The GPS position fix is available almost 24 hours a day from January 1993. Thus the back-up navigator is rarely needed.

However, select the back-up navigator to use when there is no GPS position fixing available.

1) Press MENU, 9 and 3 .
2) Press CLR, 2 and ENT.

For no external navigator, select " 2 : GPDR."

Figure 5-4 BACK UP NAV SELECT display

If there is no back-up navigator, enter speed and heading information as follows.
3) Press MENU, 9 and 2 .
4) Press CLR 0 and ENT to select MANUAL (speed input).

Figure 5-5 LOG GYRO DATA display
5) Press
6) Enter ship's speed, in three digits.

CLR D (DENT.

7) Press ∇ four times.
8) Press CLR, 0 and ENT to select MANUAL (heading input).
```
    LOG - GYRO DATA
GGYRO = MANUAL (1:AUTO 0:MANUAL)
HDG = 000.00
SET/DFT SMOOTHING=5 (0~9)
```

Figure 5-6 LOG GYRO DATA display
9) Press \square
10) Enter heading.

CLR $\square \square \square . \square$ ENT.

NOTE: Steps 3 through 6 and 7 through 10 are for manual entry of speed and heading, respectively. For automatic entry, in case of speed log and gyrocompass connection, select AUTO on the LOG and GYRO lines of the $L O G$ GYRO DATA display.

Initial Settings

The INIT DATA (2) display allows you to correct latitude and longitude position, enter smoothing values, and disable unhealthy satellites.

1) Press MENU, 9 and 0. The INIT DATA (2) display appears.

Figure 5-7 INIT DATA (2) display (first page)
2) Enter latitude and longitude corrections.

CLR]. $] \square \square^{\prime}(+/-1)$

$\square . \square \square \square^{\prime}(+/-)$ ENT
You can correct the GPS-obtained position fix. Before entering a correction value here, however, confirm that the geodetic chart system setting agrees with your chart. (See page 5-2.). The correction value is applied to the GPS position fix only; it does not affect the position information fed from a back-up navigator.
3) Press ∇.
4) Enter latitude and longitude smoothing.

CLR \square ENT

The GPS position fix changes randomly when the DOP or receiving condition is unfavorable. This fluctuation may be stabilized by smoothing the raw GPS position fixes as illustrated in Figure 5-8.

Figure 5-8 Latitude and longitude smoothing
The higher the setting the smoother the raw data. If the setting is too high, however, response to changes in latitude and longitude are delayed. The higher the number, the higher the smoothing. For no smoothing, enter 0 . The normal smoothing setting is 0 . Increase the setting when the GPS position fixes fluctuate intolerably.
5) Press ∇.
6) Enter speed and course smoothing.

CLR ENT

Ship's speed and course are directly measured when receiving GPS satellites. This raw data usually varies randomly depending on receiving condition and other factors. You can smooth this variation as illustrated in Figure 5-9.

Figure 5-9 Speed and course smoothing

The higher the setting, the smoother the data. If the setting is too high, however, actual speed and caurse are not reflected on the speed and course readings, as illustrated in Figure 5-10. You can enter a smoothing rate from 00 to $99 ; 0$ for no smoothing. " 5 " seconds is commonly used and provides excellent performance under most conditions.

Figure 5-10 What happens when smoothing is set too high
7) Press

8) Enter average speed and course smoothing.

The average speed and course are indicated at the SPD CRS display. The average speed and course smoothing setting affects calculation of time-to-go and estimated time of arrival. The default setting is 1 minutes and it provides excellent performance under most conditions.
9) Press
10) You can manually disable unhealthy satellites to prevent use of them in GPS position fixing.

CLR
 \square ENT

Every satellite broadcasts the abnormal satellites in its almanac. When the GP-500 MARK-2 receives an almanac, it automatically eliminates abnormal satellites from the GPS receiving schedule. When the satellite is once again "on-line," this unit includes it in the receiving schedule. Thus you normally are not required to manually disable an abnormal satellite.

Abnormal satellites appearing on the position fixing schedule are automatically deselected satellites. The disabled satellites shown on the INIT DATA (2) display are manually deselected satellites.
11) Press \qquad

Figure 5-11 INIT DATA (2) display (second page)
12) You may input (and display) Loran A or C TDs or Decca LOPs.

CLR ENT

Select the position information you want to display. Enter 1, Loran C TDs; 2, Loran A TDs; 3, Decca LOPs; or 4, display latitude and longitude only.
13) Press

- Loran C TDs

For your reference, Loran C chains appear on page A-9.

Figure 5-12 INIT DATA (2) display
(1) Enter GRI.

CLR $\square \square \square \square$ ENT

(2) Press ∇.
(3) Enter slave code no. 1.

CLR $\square \square$ ENT

(4) Press ∇.
(5) Enter slave code no. 2.

CLR $\square \square$ ENT

(6) Press \square

- Loran A TDs

For your reference, Loran A chains appear on page A-10.

Figure 5-13 INIT DATA (2) display
(1) Enter slave code no. 1.

CLR $\square \square \square$ ENT

Use keys 1,2 and 3 to enter S, L and H, respectively.
(2) Press \qquad
(3) Enter slave code no. 2.

CLR $\square \square \square$ ENT

(4) Press

- Decca LOPs

Decca chains appear on page A-11.

Figure 5-14 INIT DATA (2) display
(1) Enter chain number.

CLR \square ENT

(2) Press
(3) Enter slave code no. 1.

CLR ENT

Use keys 1, 2 and 3 to enter red, green and purple stations, respectively.
(4) Press

(5) Enter slave code no. 2
(6) Press \square
Loran C
$\begin{array}{lll}\text { L } 1 & \text { CORRECTION } \\ \text { L2 } \\ \text { CORRECTION }\end{array}$

Loran A
$\begin{array}{ll}\text { L1 CORRECTION }= & 0.0 u s(-99.9 \sim+99.9) \\ \text { L2 CORRECTION } & =0.0 u s(-99.9 \sim+99.9)\end{array}$

Decca

14) Enter correction for LOP1.

CLR $\square \square(+/-$ ENT

Variation in signal propagation delay can cause constant errors in the computed LOP (or TD). You can enter manual LOP corrections to further refine the LOP coordinates on a particular chart.
15) Press ∇
16) Enter manual LOP or TD correction for LOP2.

CLR $\square \square \square$ ENT

17) Press

Figure 5-15 INIT DATA (2) (third page)
18) Select whether to generate the buzzer (three beeps) when GPS position fixing becomes available or unavailable. Enter 1 to enable the buzzer; 0 for no buzzer.
19) Press \square twice.
20) Enter clock correction in microseconds.

The GP-500 MARK-2 employs an extremely accurate clock which generates a one-second interval pulsed signal. It is synchronized to the GPS satellites atomic clock, but if the antenna cable is very long accurate synchronization may not be possible. In this case enter correction in microseconds.

Differential GPS

Refer to page 8-30 for DGPS Beacon Receiver and connect the cable to "Data in/out" connector. Initialize GP-500 Mark-2 according to the specification of the DGPS Beacon Receiver.

Initial settings
 1) Press MENU, 8 and 0 . The INITIAL DATA (DGPS) display appears.

Figure 5-16 INITLAL DATA (DGPS)
2) Press CLR, 1 and ENT to turn on DGPS function.
3) Press \square
4) Select RTCM VERSION.

CLR ENT

Enter for version 2.1.
(Only "version 2.1" is available.)
5) Press

6) Select BYTE FORMAT.

CLR ENT

Enter 1 for $8-6 ; 0$ for $8-8$.
7) Press \square
8) Select what comes for FIRST BIT.

CLR ENT

Enter 1 for LSB; 0 for MSB.
9) Press \square
10) Select type of PARITY BIT.

Enter 0 for no parity bit. (Only "no parity bit" is available.)
11) Press

12) Select the number of STOP BIT.

Enter 0 for one stop bits.
(Only "one stop bit" is available.)
13) Press

14) Select the number of BIT RATE.

CLR ENT

Enter 0 for 8 bits.
(Only " 8 bits" is available.)
15) Press

16) Enter data communication speed (BAUD RATE) in four digits.

\section*{| CLR 4 | 8 | 0 | ENT |
| :--- | :--- | :--- | :--- |}

(Only "4800 bps" is available.)
When you are in a DGPS service area and in the DGPS mode, "DGPS" appears on the display. This means the position shown is corrected by DGPS.

When you go out of DGPS service area, "DGPS" disappears.

Data receiving 1) Press MENU, 8 and 1 . The DGPS STATUS MONITOR status display appears. This display shows the condition of the data reception.

DGPS STATUS MONITOR
 DATA RECEIVE

Figure 5-17 DGPS STATUS MONITOR
When the data reception is good, GP-500 MARK-2 starts DGPS operation.
"DGPS" appears as position-fixing system in use at the top left corner of the screen.

Default Settings

When the internal memory is cleared default settings are automatically restored. The default settings are as follows.

[MENU]

[0]: INITIAL DATA (1)

Position Mode $=\underline{2 \mathrm{D}}$
Antenna Height $=\underline{5} \mathrm{M}$
MASK ELEVATION $=\underline{5}^{\circ}$

- [9]: SYSTEM DATA MENU
[0]: INITIAL DATA (2)

L/L Correction $=0.000^{\prime} \mathrm{N} 0.000^{\prime} \mathrm{W}$
- L/L Smoothing $=\underline{0}$
- S/C Smoothing $=5$
- AVE S/C Smoothing = 1
- DISABLED SATS = None
- SELECT = OFF
- Backup NAV Buzzer = OFF
- Forced Sats = None
- 1 S CLK Correction $=$ None

[1]: DATUM SELECT
_ Datum Select $=\underline{\text { WGS- } 84}$
[2]: LOG•GYRO DATA
Log Mode $=$ MANUAL

- Speed $=0.0$
- Log $I n=$ CONTACT
- Log Pulse $($ In $)=\underline{2} \underline{0} \underline{0}$ P/NM
- Log Pulse $($ Out $)=\underline{0}$ P/NM
- Gyro Mode $=$ MANUAL
- Heading $=0.0$
Set/Drift Smoothing $=\underline{5}$
_ [3]: BACK UP NAVAID SELECT
__Back-up Navaid $=$ None
GPS Position Correction = NO
Smoothing $=\underline{9}$
GPS Correction $=$ None
[4]: MAGNETIC VARIATION
- Correction $=$ MANUAL
- Correction Variation $=\underline{0} \underline{0}^{\circ} \mathrm{E}$
[5]: DISPLAY UNIT
Lat/Long Resolution $=\underline{0.001}$
Range Bearing Calculation = GREAT CIRCLE
Height Unit = Meter
Range/Speed Unit $=\underline{N M}$
Bar Graphic = XTE
VTD/BRG/RNG $=\underline{V T D}$
[9]: I/O DATA FORMAT
_ [0]: DATA IN CONNECTOR
Format $=\underline{\text { NMEA } 0183}$
[1]: DATA OUT CONNECTOR
Format $=$ CIF
Out Data $=$ L/L: 01, R/B: 60, S/C: 01, HGT: 01
- Data Change = no
- GPS Data Out $=0 \mathrm{~N}$
L GPS Error Code Out $=\underline{O N}$
Format $=$ IEC 1162
Interval = AAM: 04, BOD: 04, BWC: 04, GGA: 10, GLL: 01, VDR: 10, VTG: 01, WPL: 60, XTE: 04, ZDA: 01, All others: 00
[2]: DATA IN/OUT CONNECTOR
Format $=$ RS232C
Interval $=\mathrm{AAM}: 04, \mathrm{BOD}: 04, \mathrm{BWC}: 04 \mathrm{GGA}: 10$, GLL: 01, VDR: 10, VTG: 01, WPL: 60 XTE: 04, ZDA: 01, All others: 00
[3]: AUTOPILOT DATA
Format $=\frac{\text { IEC } 1162}{\text { L Interval }=\text { AAM: 04, BOD: 04, }}$ BWC: 04, VTG: 04, XTE: 04

ALARMS

This chapter provides the information necessary for setting the alarms and the stopwatch. There are nine conditions which can generate both audible and visual alarms in the GP-500 MARK-2. These are:

- Timer
- Stopwatch
- Wake-up
- Arrival alarm
- Anchor watch alarm
- Cross track error (XTE) alarm
- Border alarm
- Ship's speed alarm, and
- Trip alarm.

CAUTION: The alarms are useful for alerting you to possibly dangerous situations. However, the captain is always responsible for the safe operation of his ship. FURUNO Electric Company will assume no responsibility for any damages associated with the use of the alarms.

Timer, Stopwatch and Wake-up

Description Timer

The audible alarm sounds when the preset time has elapsed.

Stopwatch

The stopwatch counts elapsed time.

Wake-up

The audible alarm sounds at the predetermined time.
Selecting timer or stopwatch

1) Press MENU and 2. The TIMER SET display appears.

Figure 6-1 TIMER SET display
2) Select timer or stopwatch. 1, timer; 0, stopwatch.

CLR ENT

3) Press \square ∇.

If you selected the timer;

(1) Enter the time interval you want to get the alarm.

CLR $\square \square \square \square \square \square$ ENT
 hr. min. sec.

(2) Press

(3) Select 1 if you want repeated count down sequence with audible alarm at every terminal count. Select 0 for one-time count down.
(4) Press \square
(5) Select if you want the audible alarm. 1 for yes; 0 for no.

CLR \square ENT

(6) Press \square

If you selected the stopwatch;

Note that the hour, repeat and buzzer indications do not appear with the stopwatch.
(1) Press
4) Set wake-up timer.
(1) Set time desired.

(2) Press ∇
(3) Press CLR, \square and ENT.

Select whether you want the audible alarm or not. 1, ON; 2, OFF

Starting the 1) Press MENU and 1. The S.(top) WATCH display appears. stopwatch

```
S. WATCH: 00 % O OMO Os
(A:START \nabla:STOP + /-:LAP)
```

Figure 6-2 S. WATCH display
2) Press Δ to start the stop watch.
3) If you need lap time, press $+/$. The reading freezes but the stopwatch continues to count up.
4) To return to stopwatch reading, press $+/$ again.
5) Pressto stop the stopwatch.

NOTE: The stopwatch counts up to 99 hours, 59 minutes and 59 seconds, whereupon it resets to zero and resumes counting up.

Starting the 1) Press MENU and 1. The TIMER display appears. timer

```
T I M E R
    02н00m00s
    (\Delta:START \nabla:STOP + / - : RESET)
```

Figure 6-3 TIMER display
2) Press Δ to start counting.
3) Press ∇ to stop counting.
4) Press Δ to resume counting.

When the timer counts to 00 hours, 00 minutes, and 00 seconds, three beeps sound if REPEAT ON is selected, or the buzzer sounds continously if REPEAT OFF is selected.

NOTE: You can press $+\infty$ at any time to return to the preset time. Then, to restart the timer, press

Anchor Watch, Arrival, Cross Track Error, Border, Speed, \& Trip Alarms

Alarm description

Anchor watch alarm

The anchor watch alarm sounds to warn you that your vessel has moved outside the anchor watch zone.

Figure 6-4 How the anchor watch alarm works

Arrival alarm

The arrival alarm warns you your vessel is approaching a destination waypoint. The area that defines an arrival zone is that of a circle which you approach from outside the circle. The alarm will be released if your vessel enters into the circle.

Figure 6-5 How the arrival alarm works

Cross track error alarm

The cross track error alarm alerts you when your vessel is off its intended course. You may preset the alarm limit from 0.01 nautical miles to a maximum lane width of 99.99 nautical miles. The alarm will be released if your vessel goes out of the lane limits.

Figure 6-6 How the cross track error alarm works

Border alarm

The border alarm defines an area, comprised of two waypoints, starting waypoint and destination waypoint, which you do not want to cross. The alarm will sound when your vessel crosses the area defined by the two waypoints.

Figure 6-7 How the border alarm works

Ship's speed alarm

The ship's speed alarm sounds when ship's speed is higher or lower than the preset speed alarm setting.

Trip alarm

The trip alarm sounds when the trip distance exceeds the trip alarm setting.

How to set

1) Press MENU, 6 and 0 . the alarms
2) Set anchor watch alarm or arrival alarm.
(1) Enter alarm range and select alarm.

$$
\text { CLR } \square \square \square(\boxed{++/}) \text { ENT }
$$

Press $+/=$ to select alarm desired; arrival or anchor watch.

A L A R M

A L ARM

\Rightarrow ANCHOR WATCH $=1.25 N M(+/-:$ ANCHR/ARRIV) $A C T \mid V A T E=O \dot{F} \quad(1: O N \quad 0: O F F)$

Figure 6-8 Displays for arrival and anchor watch alarms
(2) Press the

(3) Turn the alarm on or off.

CLR ENT

$$
1, \mathrm{ON} ; 0, \mathrm{OFF}
$$

(4) Press
3) Set XTE (cross track error) alarm or border alarm.
(1) Enter alarm range and select alarm.

CLR $\square . \square \square(+/-$ ENT

Press +/- to select alarm desired; XTE or border.

Figure 6-9 Displays for XTE and border alarms
(2) Press the
(3) Turn the alarm on or off.

CLR ENT

$1, \mathrm{ON} ; 2, \mathrm{OFF}$
(4) Press
4) Select whether you want the audible alarm or not.

CLR \square ENT

$1, \mathrm{ON} ; 2, \mathrm{OFF}$
If you have enabled the audible alarm it will sound when an alarm setting is exceeded.
5) Press


```
    A L A RM
\(\Rightarrow\) MAX SPEED \(\quad=999 K T \quad(000 \sim 999)\)
MIN SPEED \(=0\) KT \(\quad(000 \sim 999)\)
MONITOR \(\quad=\) OFF ( \(1:\) ON 0:OFF)
TRIP RANGE \(=0\) ONM (0000.0~9999.9)
    MON ITOR
    \(=O F F\)
(1:ON 0:OFF)
NAV ALARM BUZZER \(=O N(1: O N \quad 0: O F F)\)
( \(\boldsymbol{\nabla}:\) : NEXT)
```

Figure 6-10 ALARM display
6) Set ship's speed alarm.
(1) Enter maximum ship's speed.

CLR $\square \square \square$ ENT

(2) Press

(3) Enter minimum ship's speed.

(4) Press

(5) Turn the monitor (visual alarm) on or off.

CLR ENT
1, ON; 2, OFF
7) Set trip alarm.
(1) Enter alarm range.

CLR $\square \square \square \square . \square$ ENT

To reset distance run to 0 , enter 0000.0 . (See page 3-16.)
(2) Press the ∇.
(3) Turn the monitor (visual alarm) on or off.

CLR ENT

$1, \mathrm{ON} ; 0, \mathrm{OFF}$
(4) Press
8) Select whether you want the audible alarm or not. This is same as step 4). Enable or disable the audible alarm at step 4 or step 8 .

When the audible alarm sounds, you can silence it by pressing the CLR key.

Alarm Display

When an alarm setting is exceeded or internal fault is detected the unit releases both audible (if enabled) and visual alarms. To know which alarm is sounding look at the alarm/error indication at the bottom right-hand corner of the display.

Figure 6-11 Location of alarm/error indication
The alarm/error indication appears on the speed/course, range/bearing, XTE, set/drift, and time-to-go display screens.

NOTE 1: "PF" appears on the display when turning on the power. This does not indicate equipment trouble. It will disappear when you press a key.

NOTE 2: You can silence the audible alarm with the CLR key. The visual alarm remains on the display until the cause of the alarm is removed.

NOTE 3: When two or more alarms are exceeded their indications appear alternately on the display.
Alarm
indications

Error indications

The following indications appear and blink every 2 seconds to alert you to alarm violation.

The following indications appear and blink every 1.5 seconds to alert you to equipment error.

SERR: Self test error. The GP-500 MARK-2 tests itself periodically for proper operation. If it detects error, "SERR" appears. To identify the faulty component, conduct the self test described on page 7-6.

BERR: The memory contents are kept alive by a lithium battery when the power is off. The estimated life of the battery is four years. "BERR" appears when battery voltage is low. In this case you can set two dry cells (UM4) in the battery case on the rear panel, or replace the lithium battery. The life of the dry cell is about one year. You may leave the expired lithium battery inside the unit. (There is no fear of leakage for more than ten years.)

REAR PANEL
Figure 6-12 GP-500 MARK-2, rear view
NOTE 1: The dry cell batteries are not consumed while the power is on.

NOTE 2: Memory contents are preserved for about 12 hours with no back-up dry cells.

DERR: Data error. This means memory contents may have been corrupted by short circuit, noise, large fluctuation of supply voltage or other factors. Press the ALM MSG key. See page 6-15.

RERR: No data fed from back-up navigator for 30 seconds. Check navigator (gyrocompass, loran, etc.) and connection cable between GP-500 MARK-2 and navigator.

PF: Power failure. It appears momentarily when you turn on the power. If it appears any other time, check the ship's power supply.
D.ER: The condition of the DGPS data reception is no good.

Displaying Full Alarm/Error Indication

If several alarms or errors occur together, it may be difficult to distinguish which alarm is sounding, because alarm/error indications appear alternately. You can display on one screen which alarms are sounding.

Press the ALM MSG key. One of the following displays appears. The date and time when the alarm condition began appear on the display.

No alarm

NO ALARM
JAN 15 '93 13:25 56 U

Alarm Timer indications

ELAPSED HOUR ALARM
 SET TIME : O1H15MOOS
 JAN 15 '93 13:25 56 U

Wake-up alarm
WAKE
U P
T I M E
ALARM
WAKE UP TIME: 16 H 45 M
JAN 15 '93 13:25 56 U

Anchor watch alarm

ANCHOR WATCH ALARM
ALARM RANGE: 0.50 NM
JAN 15 '93 13:25 56 U

Arrival alarm

ARRIVAL ALARM
$\begin{array}{lllll}\text { ALARM } & \text { RANGE } & 2.50 N M \\ \text { JAN } 15 & 93 & 13: 25 & 56 & \mathrm{U}\end{array}$

XTE alarm

OFF COURSE ALARM
ALARM RANGE: $2.50 N M$
JAN 15 '93 $13: 25 \quad 56 \quad U$

Border alarm

BORDER ALARM
ALARM RANGE: 2.50 NM
JAN 15 '93 13:25 56 U

Trip alarm

TR\|P ALARM
 ALARM RANGE: $9999 N M$
 JAN 15 '93 13:25 56 U

Ship's speed alarm

S P E E D ALARM
 $\begin{array}{llll}M A X & \text { ALARM RANGE: } & 25 K T \\ M I N & \text { ALARM RANGE: } & 5 K T\end{array}$
 JAN 15 '93 13:25 56 U

System alarm SERR

SELF TEST
ERROR
JAN 15 '93 13:25 56 U

BERR

B A T T ER
ERROR
A L A RM
JAN 15 '93 $13: 25 \quad 56 \quad U$

DERR

B A C K
D A T A
ERROR
clear
DATA??(1:YES/OTHRE
KEY:NO)
JAN 15 '93 $13: 25 \quad 56 \quad U$

- This message also appears when error is detected at the power-on self test.
- When this display appears clear the memory by pressing 1 and ENT. (If you want to record important waypoints in a log first press any key to escape from the error display. Go to the waypoint display and record waypoints into a log, and then press the ALM MSG key again.) All memories are cleared and default settings are restored.

RERR

```
RECE | VE ERROR
JAN 15 '93 1 3:25 56 U
```


D. ER

D G P S
ERROR
ALARM
JAN $15 \quad 193 \quad 13: 25 \quad 56 \quad U$

If several alarms or errors exist, "CONTINUE" appears at the bottom right-hand corner of the display. To display which alarms are sounding, press ALM MSG continuously.

ALARM

CONTINUE

TROUBLESHOOTING

This chapter contains troubleshooting procedures. Whenever you suspect the unit is not functioning properly follow the troubleshooting procedure to try to restore normal operation.

\triangle WARNING

 Do not open the cover of the equipment.
 This equipment uses high voltage electricity which can shock, burn or cause death. Only qualified personnel should work inside the equipment.

Troubleshooting

Cannot receive satellite nor fix position

(1) Check for disconnected antenna cable. Look for water leakage near the connector.
(2) Position displayed is more than 10 degrees in error. If so, enter estimated position (within 10 degrees), referring to page 2-8.
(3) Conduct the self test to identify faulty component, referring to page 7-6.
(4) Display cold start information. (See page 7-11). If the almanac is more than one-year old, conduct the cold start.
(5) Display satellite schedule information (page 7-5). If GPS satellite availability on your vessel is less than that on other GPS receiver-equipped vessels the almanac inside the GP-500 MARK-2 may be too old. Conduct the cold start to receive the almanac.

Position fixing period shorter than that on other vessels

(1) Abnormal satellite selected as "healthy" satellite. See page 5-15.
(2) Object (mast, etc.) within line of sight of GPS antenna. An object near the antenna may interfere with reception of the satellite signal.

Set, drift display error

Current speed and direction are calculated as the difference.

Set, drift display error

Current speed and direction are calculated as the difference between speed and speed log and course and gyrocompass, respectively.
(1) Check speed log and gyrocompass for proper operation.
(2) Check speed and course readings for accuracy. Speed and course will vary randomly by slow ship's speed, rolling, pitching, etc. (Ship's vibration is also measured as speed.) Thus current speed and direction will vary according to those factors.

Position error

Check for correction selection of geodetic chart.

Satellite Receiving Condition (SV Display)

Press MENU, 9 and 7. The SV (Space Vehicle) CONDITION display appears. This display shows the condition of the satellites currently within line-of-sight.

Figure 7-1 Typical SV CONDITION display

Future Satellites Display

Press MENU and 7 .

$F \cup T$,					SATELLITES								
1	JAN	15			\rightarrow	09	: 34						
2	JAN	15	10	21	\rightarrow	16	: 56	DO	P		3		7
3	$J A N$	15	18	45	\rightarrow	22	: 01	NOR	RMA	A L	8		
4	JAN	15	22	49	\rightarrow	02	04	ABN	NOR	RMAL	S V		
5	JAN	16	02	37	\rightarrow	04	: 57		4	07	08		
6	JAN	18	05	12	\rightarrow	05	38						

FUTURE SATELLITES
 24 HOURS OK

Figure 7-2 Typical FUTURE SATELLITES display
"---:---" means GPS position fix is available at present time. Current DOP also is shown.

NOTE 1: Prediction based on almanac.
NOTE 2: Up to six periods within 24 hours are shown.
NOTE 3: The presentation is updated during GPS position fuxing. If latitude and longitude are entered during period of no GPS position fixing the presentation is updated every three to four minutes.

Testing the Unit for Proper Operation

The GP-500 MARK-2 contains various testing facilities which can be conducted by the user to check it for proper operation.

Self test
This function continuously tests the unit for proper operation. It is different from the power-on self test. While the test is being conducted GPS position fixing is not available.

1) Press MENU, 9, 8 and 0. Self test results appear on the SELF TEST display.

Figure 7-3 SELF TEST display
GPS (FIX), NAV and DIO Boards are tested. A filled circle () indicates board error. The test displays ROM program version numbers.
2) To escape from the self test, turn off the power by pressing PWR and OFF simultaneously.

Communication interface test

SELF TEST RESULTS OF (DATA OUT) \& [DATA IN] CONNECTORS
SELF TEST RESULTS OF (DATA IN/OUT] CONNECTOR
SELF TEST RESULTS OF (LOG) CONNECTOR
1 means normal; 0, error

This test requires connection of Rx input with Tx inputs by jumper wires as shown in Figure 7-4. In this coupling the GP-500 MARK-2 transmits and receives a test data. If the received data matches the transmitted data, " 1 " appears on the display. If there is no jumper connected or if external equipment is connected " 0 " appears.

Figure 7-4 Jumper connection for communication test

Keyboard test This test checks each key for proper operation.

1) Press MENU, 9,8 and 1 .
2) Press each key one by one, except PWR and OFF keys. The associated indication fills the display if the key is functioning properly. Figure 7-5a shows key and associated indication.

Figure 7-5a GP-500 MARK-2, showing key and associated indication in the keyboard test

Figure 7-5b KEYBOARD TEST display, [2] key pressed
3) To escape from the test press the 3 key twice.

Clearing the Memory

You can clear all or specific memory banks. Clear all memories when the error indication "DERR" appears on the display, and clear specific memories when they contain errors.

Clearing all memories (including almanac)

1) Press MENU, 9, 8 and 2 .
2) Press The MEMORY CLEAR display appears.

MEMORY CLEAR
DATA CLEAR $=---\quad(1: Y E S \quad)$
\rightarrow ALL \quad CLEAR $=-\cdots \quad(1 ; Y E S)$

Figure 7-6 MEMORY CLEAR display
3) Press CLR, 1 and ENT. The unit starts clearing all memories.

When all memories are cleared, the screen is cleared, and then the MEMORY CLEAR display appears.

Receive the almanac to fix your position, as prescribed on page 7-11.

Clearing data You can clear data memories when, for example, they contain memories error. Note that the waypoint memory and the almanac are not cleared. The following data are cleared:

```
INITIAL DATA (1) \cdots...........(MENU,0)
INITIAL DATA (2)}\cdots\cdots\cdots\cdots\cdots\cdots`(MENU, 9, 0)
```



```
LOG/GYRO DATA ..............(MENU, 9, 2)
BACK UP NAV SELECT . . . . . . (MENU, 9, 3)
MAGNETIC CORRECTION \cdots...(MENU, 9, 4)
DISPLAY UNIT . . . . .............(MENU, 9, 5)
I/O DATA SELECT................(MENU, 9, 9)
```

1) Press MENU, 9, 8 and 2. The MEMORY CLEAR display appears.

MEMOR				
\rightarrow D A T	clear	$=$	(1 : Y ES)
A L L	CLEAR	$=---$	(1 : YES)

Figure 7-7 MEMORY CLEAR display
2) Press CLR, 1 and ENT.

When all data are cleared, the screen is cleared and then the MEMORY CLEAR display appears.

Cold Start

When the GP-500 MARK-2 has not been used for about 1 year or the memories have been cleared it takes considerable time to fix your position. (Note that extreme error in the present time or latitude and longitude position also cause this trouble.) This is because the existing almanac is too old to predict satellite arrival times. In this case conduct the cold start to receive the almanac and fix your position. It takes about 2 to 3 minutes to fix your position.

NOTE: Estimated position should be within ten degrees. If it is more than ten degrees it may take more than 10 minutes to fix your position.

1) Press MENU, 9 and 6. The COLD START display appears. The display shows date and time existing almanac was received.

Figure 7-8 COLD START display
2) Press CLR, 1 and ENT. The existing almanac is cleared, indicated by erasing the information in "ALMANAC D, T," to acquire a satellite from which to receive the almanac.

PRESENTATION FOR TECHNICIANS

Figure 7-9 COLD START display, showing existing almanac is cleared

When almanac reception is completed, the date and time the almanac was received appears on the display.

INSTALLATION

Display Unit Installation

Mounting

Install the unit where the LCD can be easily viewed and the keyboard can be easily operated by referring to page D-2 or D-3.

The unit can be installed on the overhead, on a tabletop, or flush mounted in a panel. Be sure to leave a little slack in cables so the unit can be dismounted from the hanger with the connectors connected. This allows the service technician to work with a "live" set.

In addition to those points, observe the following precautions.

- Locate the unit out of direct sunlight because of heat which can build up inside the cabinet.
- The temperature and humidity of the mounting location should be stable and moderate.
- Locate the unit away from exhaust pipes and vents.
- The mounting location should be well ventilated.
- Mount the unit where shock and vibration are minimal.

TABLETOP

FLUSH MOUNT

OVERHEAD

Figure 8-1 Display unit mounting methods

Antenna Unit Installation

Mounting When selecting a mounting location for the antenna unit keep in considerations mind the following points.

- Install the unit outside of the radar beam. The radar beam will obstruct or prevent reception of the GPS satellite signal.
- Locate the unit well away from antennas of communication equipment. See the next page for minimum separation distances.
- Be sure the location offers a clean line-of-sight to satellites. Objects within line-of-sight to a satellite, for example, a mast or funnel, may prevent reception or result in long-lasting "Acquire" or "Interrupt" condition.
- Mount the unit as high as possible. Mounting the antenna as high as possible keeps it free of water spray, which can interrupt reception of a GPS satellite signal.

Antenna cable The standard cable is 15 m long. 30 m length or 50 m length length cable is optionally available. This cable cannot be directly connected to the display unit since its diameter is too large. The basic procedure for attaching the cable to the antenna unit is as follows.

1) Cut the cable to appropriate length (if necessary).
2) Fabricate the end of antenna cable and attach the coaxial connector. Details are shown on next page.

- Waterproofing the connector

Wrap connector with vulcanizing tape and then vinyl tape. Bind the tape end with cable-tie.

Figure 8-2 How to waterproof the antenna connector

How to attach the N-P-8DFB connector

Remove outer sheath and armor by the dimensions shown left.
Expose inner sheath and shield by the dimensions shown left.

Cover armor with heat-shrink tube.

Cut off insulator and core by 10 mm .

Twist shield end.

Slip on clamp nut, gasket and clamp as shown left.

Fold back shield over clamp and trim.

Cut aluminum foil at four places, 90° from one another.

Trim aluminum tape foil here.

Fold back aluminum foil onto shield and trim.

Expose the insulator by 1 mm .
Expose the core by 5 mm .

Slip the pin onto the conductor. Solder them together through the hole on the pin.

Insert the pin into the shell. Screw the clamp nut into the shell.
(Tighten by turning the clamp nut. Do not tighten by turning the shell.)

Figure 8-3 How to attach the N-P-8DFB connector

Table 8-2 Antenna cable and plug compatibility

Cable		Connection Diagram	Necessary Plug			Remarks
Max. Length	Type		Type	Code No.	Qty	
	3D-2V	$\} A$	BNC-P117NI	000-112-144	2	
25m	5D-2V	A	BNC-P-5	000-500-397	2	
30 m	RG-8/U	B	UG-21D/U	Local Supply	2	BNC-N Connector
35 m	8D-2V	B	N-P-8	000-501-512	2	Conversion Adapter (000-123-810)
45m	5D-FB	B	N-P-5	000-107-861	2	Conversion Cable Assy. NJBP-3DXV-1
65 m	8D-FB	B	N-P-8DFB	000-111-549	2	$(000-117-602)$
83 m	10D-FB	B	N-P-10	000-501-517	2	

(B)

Figure 8-4 Adaptor plugs and connection method

Connections on the display Unit

Connect the antenna cable, the copper strap, the power cable and external equipment to the display unit as shown in Figure

ANTENNA CABLE

Figure 8-5 Connections

The DATA OUT, DATA IN, GYRO, LOG, and DATA IN/OUT terminals either output position information to external equipment such as a radar, an echo sounder, a plotter, etc. or receive speed and heading data. A signal cable comes with the GP-500 MARK-2 for connection with external equipment. One end of the cable is prefitted with a connector. Connect it to appropriate connector. Attach a connector to the other end of the cable and connect it to external equipment.

Contact closure signal output representing ship's speed is available on LOG connector. This output is not the bypassed log signal input, but is generated by the GP-500 MARK-2 in accordance with the speed data which is obtained by GPS-reception or back-up navaid. Ratings of the relay contact are as follows.

	Resistance Load $(\cos \phi=1)$	Inductance Load $(\cos \phi=0.4, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms})$
Raring	125 Vac 0.4 A 30 Vdc 2.0 A	125 Vac 0.2 A 30 Vdc 1.0 A

An external buzzer may be connected. Contact closure signal is output, and you mat connect a horn for a car, etc. The ratings for the relay contact are same as the one shown above.

Entering Initial Data

After installing the unit, enter initial data as follows.

Entering	1) Press the PWR key.
estimated	
latitude and	2) Press MENU and 0 . The INTT DATA (1) display appears.
longitude,	
antenna height	

Figure 8-6 INIT DATA (1) display
3) Press ∇ three times. Entry of date and time is not required. They are corrected when the unit receives a GPS satellite. To use local time instead of UTC, enter time difference on second line.
4) Enter estimated latitude within 10 degrees of actual position. Use the $+/-$ key to switch coordinate from North to South and vice versa.

5) Press the ENT key.
6) Press ∇.
7) Enter estimated longitude within 10 degrees of actual position. Use the $+/-$ key to switch coordinate from West to East and vice versa.

8) Press the ENT key.
9) Press
 three times.
10) Enter height of antenna above the waterline in meters.

CLR $\square \square \square \square E N T$

Correct input of the antenna height above the waterline is essential for accurate determination of position. This data is used in 2D position fixing only.
11)Press the SPD CRS key. The GP-500 MARK-2 starts acquiring a satellite to fix its position. This takes from 15 to 45 minutes. 2D appears on the display when position fixing is completed.

NOTE: Do not change the setting of MASK ELEVATION (default setting 5°).

Selecting back-up navigator

GPS position fixes is available almost 24 hours a day from January 1993. Therefore, a back-up navigator is rarely needed. However, select the navigator which is to feed position information during no GPS position fixing as follows.

1) Press MENU, 9 and 3. The BACK UP NAV SELECT display appears.

Figure 8-7 BACK UP NAV SELECT display
2) Press CLR, \square and ENT.

1: No navigator connection. Your position is fixed (as long as three or four satellites are within line of sight) by GPS. When there is no GPS position fixing the position display freezes.
2: GPDR = Dead reckoning; log or gyrocompass
3: NNDR = Satellite navigator
4: LRN-A $=$ Loran A
5: LRN-C = Loran C
6: OMG = Omega
7: DEC = Decca
3) Press
4) Enter GPS position correction. Usually a constant difference exists between GPS and back-up navigator position fixes. This causes the position display to change when switching between GPS and back-up navigator.

Figure 8-8 What happens to position display when switching from GPS to back-up navigator

The GPS fix is so more reliable than that of the back-up navigator, enter 1 (yes) to correct the back-up fix. Enter 0 for no correction.

Figure 8-9 Effect of GPS position correction
5) Press

6) Enter GPS position correction smoothing, if necessary. The correction, illustrated in Figure 8-17, is determined by averaging the differences between the GPS and back-up navigator position fixes. Enter the averaging period here.

Figure 8-10 GPS correction smoothing
If the GPS or the back-up position is unstable, use a higher setting to get a longer averaging period. Enter 0 for no smoothing. For no smoothing, the correction value is given as the difference between the last GPS position fix and the back-up position fix at the time of the switching.

GPS correction value appears at the bottom of the display.

Selecting speed log and gyrocompass

If GPDR is selected as back-up navigator enable automatic or manual input of speed and heading data. (Manual input of speed and heading is necessary if you require the set and drift display.) If GPDR is selected but there is no \log or gyrocompass see page 5-7 for further details.

1) Press MENU, 9 and 2. The LOG GYRO display appears.

	$G \cdot G Y R$	DATA (V:GYRO)
\Rightarrow LOG	AUTO	(1:AUTO 0:MANUAL)
SPD	$=\mathrm{LOG}$	($1:$ LOG $0:$ NMEA ${ }^{\text {a }}$)
LOG	IN = CONTACT	(1:CONTACT 0:TTL)
LOG	PULSE (IN)	$\left.\begin{array}{rl} 200 & 0 \end{array} \quad \begin{array}{ccccccccc} N M & (1 & 0 & 0 & \sim & 5 & 0 & 0 & P \end{array} / N M\right)$
LOG	PULSE (OUT)	$0 \mathrm{P} / \mathrm{NM}$ ($\quad 0 \sim 500 \mathrm{P} / \mathrm{NM})$

Figure 8-11 LOG GYRO DATA display (first page)

For speed \log or external navigator connection;
2) Press CLR, 1 and ENT to select AUTO.
3) Press ∇.
4) Select source of speed information.

CLR ENT

$1, \log ; 0$, NMEA
If a navigator is connected to the DATA IN or DATA IN/OUT connector and outputs speed data (VHW) in NMEA 0183 format it can be used for dead reckoning.
5) Press

6) Select signal type of speed log.

CLR \square ENT
1 , contact closure; 0 , TTL level
7) Press ∇.
8) Select \log pulse ratio for input (pulses/nautical mile).

CLR $\square \square \square \square$ ENT

(100 to 500 or 9,000 to 30,000)
9) Press

10) Select \log pulse ratio for output.

(0 to 500)
You may output the speed signal (pulse signal) for external equipment measured by GPS. Enter 0 for no speed \log output.
11) Press V.

For gyrocompass or external navigator connection;

12) Press CLR, 1 and ENT to select AUTO.

```
SET/DFT SMOOTHING= = (0~9)
```

Figure 8-12 LOG GYRO DATA display (second page)
13) Press

14) Enter source of heading information.

CLR ENT

1, gyro; 2, NMEA
If a navigator is connected to DATA IN or DATA IN/OUT connector and outputs heading data (VHW) in NMEA 0183 format it can be used in dead reckoning.
15) Press

16) Enter set and drift smoothing.

CLR ENT

(0 to 9)
" 5 " is the standard setting.
Select communication format for DATA IN, DATA OUT, and communication DATA IN/OUT connectors. When you select a format for format DATA IN, the same format is selected for DATA OUT, and vice versa.

NOTE: The GP-500 MARK-2 can output and receive various data in CIF or NMEA format. When selecting format be sure the connected equipment is able to handle data to be output.

DATA IN connector

This connector carries data from the back-up navigator. Note that this connector can also output autopilot information. More on this later.

1) Press MENU, 9, 9 and 0 . The DATA IN CONNECTOR display appears.

Figure 8-13 DATA IN CONNECTOR display
2) Select format.

1, NMEA 0183; 0, CIF
The DATA IN connector can receive the following sentences:
FURUNO CIF: Present latitude, longitude, speed and course NMEA 0183: GLL (present latitude and longitude), VHW (heading, water tracking speed) and VTG (course, ground tracking speed)

NOTE VHW is required when GPDR is selected as back-up navigator and NMEA 0183 as speed and heading information source.

DATA OUT connector

This connector is normally used to connect display devices such as plotter or video color sounder.

For CIF format;

1) Press MENU, 9,9 and 1. The DATA OUT CONNECTOR display appears.

Figure 8-14 DATA OUT CONNECTOR display
2) Press CLR 0 and ENT to select CIF.
3) Press

4) Enter transmission interval ($00,01,02,03,04,05,10,12$, $15,20,30,40,50,60$ or 90 seconds) for each of the following sentences. Enter 00 to disable transmission.

L/L ... latitude and longitude position
R/B… range and bearing from present position to TO waypoin
S/C... speed and course
HGT \cdot a altitude obtained by 3-dimensional position fix
5) Press \square
6) Select navigator for data (format) change.

CLR \square ENT

The GPS fix sentence is relatively new so some late model equipment may not recognize it. In this case both GPS and back-up position fixes may be transmitted in the format of a conventional navaid, one the external equipment recognizes. Select sentence as follows.
$0:--=$ GPS navigator
1: DR = Satellite navigator
2: LA $=$ Loran A
3: LC = Loran C
4: OM = Omega
5: DC = Decca
7) Press \square
8) Select how to output GPS data.

CLR ENT

Enter 1 to transmit both GPS and back-up position fixes in GPS format and dummy format. For GPS format only, enter " 0 ." at step 6 and " 1 " at this step.
9) Press \square
10) Select whether to output GPS error code.

Enter 1 to transmit back-up position fix with GPS error code. Enter 0 to output original error code from back-up navaid. Normally, select 0 .

For IEC 1162-1 format;

1) Press MENU, 9, 9 and 1. The DATA OUT CONNECTOR display appears.

GP: data format selected at previous page.

DATA OUT CONNECTOR

\Rightarrow FORMAT $=$
=
IEC1162(1:IECO:CIF
) ${ }^{\mathrm{GP}} 93 \%$
INTERVAL =
INTERVAL =
INTERVAL =
INTERVAL
INTERVAL =

AAM: 04

4 APA: 00 APB:00
BOD:04 BWC: 04
 AWW:00 ABB:00

GLL: 01 WCV: OO WNC: 00 WPL: 60 XTE:04 ZDA:01 LZ:00 ZTG: 00

Figure 8-15 DATA OUT CONNECTOR display
2) Press CLR, 1 and ENT to select IEC.
3) Press

4) Enter transmission interval for each of the following sentences.

Choose from 00, 01, 02, 03, 04, 05, 10, $12,15,20,30,40$, 50, 60 and 90 seconds. Enter 00 for no transmission.
5) Repeat steps 3 and 4 to select transmission intervals for remaining sentences.

The TX rate of operation is the percentage of data output in one second, and it appears at the top right-hand corner on the screen. If short intervals are assigned to many sentences, the rate of operation increases as illustrated below.

A rate of operation exceeding 100% is impractical. For better performance, the rate of operation should not exceed 93%, the default setting.

NOTE 1: During back-up periods, sentences are transmitted with the talker ID "GP." However, the sentence contains error flags (for example, APA, XTE) to signify the position data is not by GPS. If there is no external navigator, speed and course information from dead reckoning are output during back-up periods.

NOTE 2: The GPS fix sentence is relatively new so some late model equipment may not recognize it. In this case both GPS and back-up position fixes may be transmitted in the format of a conventional navaid, one the external equipment recognizes. Select one as follows.
(1) Temporarily select CIF format by pressing at the DATA OUT CONNECTOR display MENU, 9 , 9 and 11). Select suitable talker on the DATA CHANGE line.

0: GP = GPS Navigator
(No transmission with a dummy format)
1: $\mathrm{DR}=$ Satellite navigator
2: LA $=$ Loran A
3: LC = Loran C
4: OM = Omega
5: DC = Decca
(2) Select IEC 1162-1 format.

If you do not need to change the talker name, temporarily select the CIF format and confirm that " 0 " is selected.

NOTE 3: GPGLL (latitude and longitude) is output with the resolution of 0.001 . The resolution level for other talkers is 0.01 .

NOTE 4: The type of IEC 1162-I and NMEA 0183 data which can be transmitted is as follows;

IEC 1162-1 sentences
AAM: Arrival alarm
APB: Autopilot format B
BOD: Bearing to TO waypoint from FROM waypoint
BWC: Range and bearing to waypoint (great circle n'àvigátion)
BWW: Bearing to waypoint
GGA: GPS position fixing condition (time of fix, latitude, longitude, receiving condition, number of satellites used, DOP)
GLL: Latitude and longitude
RMB: Generic navigational information (cross track error, steering direction starting waypoint no., destination waypoint no., latitude and longitude of starting waypoint, latitude and longitude of destination waypoint, range and bearing to waypoint, range and bearing from present position to destination waypoint, velocity to destination, arrival alarm)
RMC: Generic navigational information (UTC time latitude, longtitude, ground speed, true course, day, month, year)
VDR: Set and drift
VTG: Actual track and ground speed
WCV: Waypoint closure velocity
WNC: Range to TO waypoint in great circle
WPL: Waypoint position
XTE: Cross track error
ZDA: UTC, local zone time
ZTG: Time to go to waypoint
NMEA 0183 sentences
APA: Autopilot format A
ZLZ: UTC, day, month, year

DATA IN/OUT connector

This connector can receive RS-232C data and differential receiver data (RS-422) and output IEC 1162-1 data. It accepts display device or differential receiver.

Figure 8-16 DATA IN/OUT connector

1) Press MENU, 9,9 and 2 The D. IN/OUT CONNECTOR display appears.

D. $1 \mathrm{~N} / \mathrm{OU}$		CONNECTOR		
FORMAT	$\begin{array}{ll}\text { RS } 23 & 3 \\ \text { A A M }\end{array}$	APA:00	APB: 00	$\begin{array}{r} 93 \% \\ \text { B OD: } 04 \end{array}$
INTERVAL	BWC: 04	BWW:00	GGA: 10	GLL: 01
INTERVAL	RMB : 00	RMC: 00	VDR: 10	VTG:011
I NTERVAL	WCV:00	WNC: 00	WPL: 60	XTE:04
I NTERVAL	Z DA: 01	ZLZ: 00	ZTG:00	

Figure 8-17 D. (ata)IN/OUT CONNECTOR display
2) Enter transmission interval for each of the following sentences.

Choose from 00, 01, 02, 03, 04, 05, 10, $12,15,20,30,40$, 50,60 and 90 seconds. Enter 00 for no transmission.
3) Press

4) Repeat steps 2 and 3 to select transmission intervals for remaining sentences.

NOTE 1: All sentences transmitted with the talker ID"GP."
NOTE 2: GPGLL (latitude and longitude) is output with the resolution of 0.001 .

NOTE 3: During back-up periods, sentences are transmitted with talker ID "GP." However, the sentence contains error flags (for example, APA, XTE) to signify the position data is not by GPS. If there is no external navigator, speed and course information from dead reckoning are output during back-up periods.

NOTE 4: RS-232C is the standard communication format. It mainly specifies electrical characteristics of signals and some handshake controls for data exchange. Sentences are prepared at the connected equipment (personal computer, etc.). The DTR output is inserted continuously; the DSR input is not available.

Autopilot connection

An autopilot may be connected either to the \#1 and \#2 pins of DATA IN or the \#3 and \#4 pins of the DATA OUT. Any other device may also be connected to these pins.

For IEC 1162-1;

1) Press MENU, 9, 9 and 3. The AUTO PILOT DATA display appears.

$A \cup T O$		$D A T A$		
FORMA	EC	I EC1162	: NMEA	80) 46%
I NTERVAL	AAM: 04	APA: 00	APB: 00	BOD: 04
I NTERVAL	BWC : 04	BWW: 00	GGA: 00	GLL: 00
I NTERVAL	RMB : 00	RMC: 00	VDR: 00	VTG: 04
INTERVAL	WCV:00	WNC:00	WPL: 00	XTE: 04
I NTERVAL	ZDA: 00	ZLZ:00	ZTG:00	

Figure 8-18 AUTO PILOT DATA display
2) Press CLR, 1 and ENT to select IEC 1162-1.
3) Press

4) Enter transmission interval for each of the following sentences.

Choose from $00,01,02,03,04,05,10,12,15,20,30,40$, 50,60 and 90 seconds. Enter 00 for no transmission.
5) Repeat steps 3 and 4 to select transmission intervals for remaining sentences.

NOTE 1: All sentences transmitted with the talker ID "GP."
NOTE 2: During back-up periods, sentences are transmitted with talker ID "GP." However, the sentence contains error flags (for example, APA, XTE) to signify the position data is not by GPS. If there is no external navigator, speed and course information from dead reckoning are output during back-up periods.

For NMEA 0180;

1) Press MENU, 9,9 and 3 .

AUTO PILOT DATA

\Rightarrow FORMAT $=180(1: \mid E C 11620: N M E A 180)$
INTERVAL = XTE:01 (01~05)

Figure 8-19 AUTO PILOT DATA display
2) Press CLR, 0 and ENT to select NMEA 0180.
3) Press \square
4) Enter transmission interval (01 to 05 seconds). Enter 00 for no transmission.

Connecting DGPS Beacon Receiver

DGPS Beacon Receiver is connected to the terminal "DATA IN/OUT". However pin numbers to be connected are different for signal levels RS-232C and RS-422.

1) When signal level of DGPS Beacon Receiver is RS-232C.

JP1 and JP2 on NAV Board are shorted in the factory setting.
2) When signal level of DGPS Beacon Receiver is RS-422.

Remove jumper wires JP1 and JP2 on NAV Board.

Interface documentation

"DATA IN" •NMEA 0183 Ver. 1.5/FURUNO CIF Sentence port
 - Input Schematic Diagram (Listener)

- Load requirements

Isolation: opto coupler
Input impedance: 470 ohm
Max voltage: $\pm 15 \mathrm{~V}$
Threshold: 3mA
(In case of FURUNO device talker connection)
－Input Sentence List

```
NMEA 0183 Ver. 1.5 Sentence
    Ckecksum is checked if attached and if any errors are found, the sentence
    becomes invalid.
```

 GLL:Geographical position - latitude/longitude
 \$--GLL, 3444.50, N, 13521.30, E*23〈CR〉〈LF〉
 a b c d e
 \(a: L a t i t u d e \quad b: N / S \quad c: L o n g i t u d e \quad d: E / T \quad e: c h e c k s u m\)
 VTG:Course over ground and ground speed
 \$--VTG, 123.0, T, \(130.0, \mathrm{M}, 23.4, \mathrm{~N}, 43.3, \mathrm{~K} * 12\langle\mathrm{CR}\rangle\langle\mathrm{LF}\rangle\)
 a b c d e f g h i
 \(a, b\) :Course degrees true \(c, d\) :Course degrees magnetic e,f:Speed knots
 g, h:Speed km/h i:checksum
 VHW: Whater speed and heading
 \(\$--V H F, 123.0, T, 130.0, \mathrm{M}, 10.0, \mathrm{~N}, 18.5, \mathrm{~K} * 34\langle\mathrm{CR}\rangle\langle\mathrm{LF}\rangle\)
 a b c d efghis
 \(a, b\) :Heading, degrees true \(c, d\) :Heading, degrees magnetic e,f:Speed, knots
 g, h:Speed, km/h i:checksum
 FURUNO CIF Data
Latitude and longitude position
Speed and course

"DATA OUT" port

- IEC 1162-1/FURUNO CIF Sentence
- Output Schematic Diagram

- Output drive capability $\max 10 \mathrm{~mA}$
- IEC 1162-1 Output is subject to the standard of IEC 1162-1 First edition 1995-11.
- Output Sentence List

Each sentence is output at the interval entered.

```
IEC 1162-1
    Ckecksum is attached to all sentences.
    AAM: Waypount arrival alarm
    APB:Autopilot sentence B
    "Heading to steer to destination waypoint data" is not used.
    BOD:Bearing-origin to destination
    BFC:Bearing and distance to waypoint.great circle
    BFH:Bearing-waypoint to waypoint
    GGA:Global positioning system (GPS) fix data
    GLL:Geographic position-latitude/longitude
    RMB:Recommended minimum navigation information
    RMC:Recommended minimum specific GPS/TRANSIT data
    VDR:Set and drift
    VTG:Course over ground and ground speed
    HCV:Waypoint closure velocity
    WNC:Distance-waypoint to waypoint-great circle
    HPL:Waypoint location
    XTE:Cross-track error,measured
    ZDA:Time and date
    ZTG:UTC and time to destination waypoint
    Also, following NMEA 0183 Ver. 1.5 sentences are output.
    APA: Autopilot sentence "A" (Can be output in NMEA 0183 Ver. 1. 5)
    ZLZ: Time of day (Can be output in NIEA 0183 Ver. 1.5)
```


FURUNO CIF Data

Latitude and longitude position
Range and bearing from present position to destination waypoint
Speed and course
Altitude obtained by 3-dimensional position fix
"DATA IN/OUT"
port - IEC 1162-1 Sentence output

- Output Schenatic Diagram (Talker)

- Output drive capability $\max .10 \mathrm{~mA}$
- IEC 1162-1 out is subject to the standard of IEC 1162-1 first edition 1995-11.
- The same sentence data is output from \#2 and \#8 of "DATA IN/OUT" port in RS-232C level.
- Output sentences same as that for "DATA OUT" port.

"Autopilot
 Data" Port

- IEC 1162-1 Sentence/NMEA 0180 Data Output
- Output Schenatic Diagram (Talker)

- Output drive capability

2 output total: max 10 mA

- IEC 1162-1 output is subject to the standard IEC 1162-1 first edition 1995-11.
- IEC 1162-1 output sentences are the same as that for "DATA OUT" port.

Specifications

ANTENNA UNIT

1) Number of Channels:
2) Receiving Frequency:
3) Receiving Code:
4) Position Fixing Method:
5) Positioning Accuracy:
6) Tracking Velocity
7) Satellite Acquisition Time:
8) Position Update Interval:

DISPLAY UNIT

1) Display:
2) Illumination:
3) Display Character:
4) Function:

Eight channels parallel, eight satellite tracking ability 1575.42 MHz

C/A Code

All-in-view, 8-state Kalman filter

Approx. $50 \mathrm{~m} .95 \%$ of the time, Horizontal dilution of position (HDOP) $\leqq 4$

Note: All GPS receivers are subject to degradation of position and velocity accuracies under the U.S. Department of Defence.

DGPS: Approx. $5 \mathrm{~m}, 95 \%$ of the time [Option]
900 kts
Warm start, 20 seconds; Cold start, 2 minutes

Every second
error and border alarms, (15) ship's speed alarm, (16) trip alarm.

DATA I/O

1) Input Port: Speed log, gyrocompass, data in, one each
2) Output Port: Data out, one
3) Input/Output Port: One
4) Format:

IEC 1162-1, CIF, NMEA 0183S, NMEA 0183

POWER SUPPLY \& ENVIRONMENTAL CONDITIONS

1) Power Supply \& Power

Consumption: $\quad 10 \mathrm{~V}$ to $40 \mathrm{VDC}, 12 \mathrm{~W}$
2) Temperature: Antenna: -25 to $+70^{\circ} \mathrm{C}$ Display: -15 to $+55^{\circ} \mathrm{C}$
3) Humidity:
95% at $40^{\circ} \mathrm{C}$ (both antenna and display units)
4) Watertightness:

Antenna: waterproof Display: Splashproof
5) Vibration:

1 to $12.5 \mathrm{~Hz}, 3.2 \mathrm{~nm} \mathrm{pp}$
12.5 to $25 \mathrm{~Hz}, 0.8 \mathrm{~nm} \mathrm{pp}$

25 to $50 \mathrm{~Hz}, 0.2 \mathrm{~nm} \mathrm{pp}$

DIMENSIONS \& WEIGHT

1) Dimensions:

Antenna: $\phi 52 \times 290 \mathrm{~mm}$
Display: $115 \times 250 \times 200 \mathrm{~mm}$
2) Weight:

Antenna: 0.5 kg
Display: 4 kg

Time Differences

Geodetic Chart Systems

001 : WGS84	
002 : WGS72	
003 : TOKYO	: Mean Value (Japan, Korea, and OkJnawa)
004 : NORTH AMERICAN 1927	: Mean Value (CONUS)
005 : EUROPEAN 1950	: Mear Value
006 : AUSTAALIAN GEODETIC 1984 : Austraila and Tasmania Island	
007 : ADINDAN	: Mean Value (Ethiopia and Sudan)
008	: Ethlopia
009	: Mall
010	: Senegal
011	: Sudan
012 : AFG	: Somalia
013 : AIN EL ABD 1970	: Bahrain island
014 : ANNA 1 ASTRO 1965	: Cocos Island
015 : ARC 1950	: Maan Value
016 :	: Botswana
017	: Lesotho
018	: Malawi
019	: Swaziland
020 :	: Zalre
021 :	: Zambla
022	: ZImbabwe
023 : ARC 1960	: Mean Value (Kenya, Tanzania)
024 :	: Kenya
025 :	: Tanzania
026 : ASCENSION ISLAND 1958	: Ascanslon Istand
027 : ASTRO BEACON "E"	: Iwo Jima island
028 : ASTRO B4 SOR. ATOLL	: Tem isiand
029 : ASTRO POS 71/4	: St. Helena Istand
030 : ASTRONOMIC STATION 1952 : Marcus island	
031 : AUSTRALIAN GEODETC 1966: Australia and Tasmania Island	
032 : BELLEVUE (IGN)	: Efate and Erromango Islands
033 : BERMUDA 1957	: Bermuda Islands
034 : BOGOTA OBSERVATORY	: Colombia
035 : CAMPO INCHAUSPE	: Argentina
036 : CANTON ISLAND 1966	: Phoenlx Istands
037: CAPE	: South Africs
038 : CAPE CANAVERAL	: Mean Value (Fiorida and Bahama falands)
039 : CARTHAGE	: Tunksla
040 : CHATHAM 1971	: Chatham Island (New Zealand)
041 : CHUA ASTRO	: Paraguay
042 : CORREGO ALEGRE	: Brand
043 : DJAKARTA (BATAVIA)	: Sumatra istand (Indonesia)
044 : DOS 1968	: Glzo island (New Georgia Istands)
045 : EASTER ISLANDS 1967	: Easter Istand
046 : EUROPEAN 1950 (Contrd)	: Western Europe
047 :	: Cyprus
048 :	: Egypt
048 :	: England, Scotland, Channel, and Shetand Islands
050 :	: England, Ireland, Scotland, and Shatland Istands
051 :	: Greece
052 :	: Iran
053 :	: Itaty - Sardinia
054 :	: Italy - Sicly
055 :	: Norway and Finland
056 :	: Portugal and Spain
057 : EUROPEAN 1979	: Mean Value
058 : GANDAUIKA EASE	: Repubilc of Maldives
059 : GEODETIC DATUM 1949	: New Zealand
060: GUAM 1963	: Guam Island
061 : GUX 1 ASTRO	: Guadaleanal tstand
082 : HJORSEY 1955	: Iceland
063 : HONG KONG 1963	: Hong kong
064 : INDIAN	: Thalland and Vletnam
065	: Bangladesh, India, and Nepal
066 : IRELAND 1965	: Ireland
067 : ISTS 073 ASTRO 1969	: Diego Garcia
068 : JHONSTON ISLAND 1961	: Jhonston Istand
069 : KANDAWALA	: Sn Lanka
070 : KERGUELEN ISLAND	: Kerguelen Island
071 : KERTAU 1948	: West Malaysla and Singapore
072 : LA REUNION	: Mascarene Island
073 : L.C. 5 ASTRO	: Cayman Brac island
074 : LIBERIA 1964	: Liberta
075 : LUZON	: Phillippines (Excluding Mincanao Island)
078	: Mindanao Istand
077 : MAHE 1871	: Mahe teland
078 : MARCO ASTRO	: Salvage islands
079 : MASSAWA	: Entraa (Ethiopia)
080 : MEFCHICH	: Morocmo
081: MIDWAY ASTRO 1961	: Midway Island
082 : MINNA	: Nlgeria
083 : NAHRWAN	: Masirah Island(Oman)
084 :	: United Arab Emirates
085 :	: Saudl Arabia
OBB : NAMIEIA	: Namibla

087 : MAPARIMA, BWI	: Trinidad and Tobago
088 : NORTH AMERICAN 1927	: Westem Unitad States
089 :	: Eastem United States
090 :	: Alaska
091 :	: Bahamas (Excluding San Salvador Island)
092 :	: Bahamas - - San Salvador Island
093 :	: Canada (Including Newtoundland Island)
094 :	: Alberta and Brtish Columbla
095 :	: East Canada
096 :	: Manltoba and Ontario
097 :	: Northwest Teintories and Saskatchewan
098 :	: Yukon
099 :	: Canal Zone
100 :	: Carbbean
101 :	- Cenral America
102:	: Cuba
103 :	: Greenland
104 :	: Mexico
105 : NORTH AMERICAN 1983	: Alaska
106:	: Canada
107 :	: CONUS
108 :	: Mexico, Central America
109 : OBSERVATORIO 1966	: Corvo and Flores Isiands (Azores)
110 : OLD EGYPTIAN 1930	: Egypt
$111:$ OLD HAWAIAN	: Mean Value
112:	: Hawail
$113:$: Kaual
114 :	: Maul
115 :	: Oahu
118 : OMAN	: Oman
117: ORDNANCE SURVEY OF	EAT BRITAIN 1936 : Mean Value
118:	: England
119:	: England, isle of Man, and Wales
120 :	: Scotiand and Shetland Istands
121:	: Wales
122 : PICO DE LAS NIVIES	: Canary Islands
123 : PITCAIRN ASTRO 1967	: Pitcairm Istand
124 : PROVSIONAL SOUTH CH	AN 1963 : South Chile (near 53° S)
125 : PROVISIONAL SOUTH AM	CAN 1958: Mear Value
126:	: Bolvia
127:	: Chite - Northem Chile (near $19{ }^{\circ}$ S)
128:	: Chile - Southem Chlie (near $43^{\circ} \mathrm{S}$)
125 :	: Colombla
130 :	: Ecuador
131:	: Guyana
132:	: Pers
133 :	: Venazuala
134 : PUERTO RICO	: Puerto Rico and Vrgin Isiands
135 : OATAR NATIONAL	- Qatar
136 : OORNOO	: South Greeniand
137: ROME 1940	: Sardinia Islands
138 : SANTA BRAZ	: Sao Magual, Santa Maria Islands (Azores)
139 : SANTO (DOS)	: Espirtto Santo Island
140 : SAPPER HILL 1943	: East Falkland Island
141 : SOUTH AMERICAN 1963	: Mean Value
142 :	: Argentina
143	: Bolivia
144 :	: Brazil
145	: Chile
145 :	: Colombia
147	: Ecuacor
148 :	: Guyana
149 :	: Paraguay
150 :	: Pers
151 :	: Trinidad and Tobago
152 :	: Venezuela
153 : SOUTH ASIA	: Singapore
154 : SOUTHEAST BASE	: Porto Santo and Madelra Islands
155 : SOUTHWEST BASE	Faial, Graciosa, Plco, Sac Jorge, and Terceira Islands
156 : TIMEALAI 1948	: Brunel and East Malaysla (Sarawak and Sadah)
157 : TOKYO	: Japan
158:	: Korea
159 :	: Okinawa
160 : TRISTAN ASTRO 1968	: Tristan da Cunha
181 : VITT LEVU 1918	: Vit Levu tsiand (Fill Islands)
162 : WAKE-ENIWETOK 1960	: Marshall tiviands
183 : ZANDERIJ	: Suriname
164 : BUKIT RIMPAH	: Bangka and Belitung Istands (Indonesla)
165 : CAMP AREA ASTRO	: Camp Memurdo Area, Antaretica
186: G. SEGARA	: Kalimantan Islands (Indonesta)
167 : HERAT NORTH	: Atghanistan
168 : HU-TZU-SHAN	: Taiwan
168 : TANANARIVE OBSERVAT	Y 1925 : Madagascar
170 : YACARE	: Unuguay
171 : RT-80	: Sweden

Loran C/A Chain

Loran C Chain

CHAIN	GRI	S1	S2	S3	S4	S5
CENTRAL PACIFIC	4990	11	29	--	--	--
CANADIAN EAST COAST	5930	11	25	38	--	--
COMMANDO LION (Korea)	5970	11	31	42	--	--
CANADIAN WEST COAST	5990	11	27	41	--	--
SOUTH SAUDI ARABIA	7170	11	26	36	52	--
LABRADOR SEA	7930	11	26	--	--	--
EASTERN RUSSIA	7950	11	30	46	61	--
GULF OF ALASKA	7960	11	26	--	--	--
NORWEGIAN SEA	7970	11	26	46	60	--
SOLTHEAST U.S.	7980	11	23	43	59	--
MEDITERRANEAN SEA	7990	11	29	47	--	--
WESTERN RUSSIA	8000	10	25	50	65	--
NOTRH CENTRAL U.S.	8290	11	27	42	--	--
NORTH SAUDI ARABIA	8990	11	25	40	56	69
GREAT LAKES	8970	11	28	44	--	--
SOUTH CENTRAL U.S.	9610	11	25	40	52	65
U.S. WEST COAST	9940	11	27	40	--	--
NORTHEAST U.S.	9960	11	25	39	54	--
NORTHEAST PACIFIC	9970	11	30	55	81	--
ICELANDIC	9980	11	30	--	--	--
NORTH PACIFIC	9990	11	29	43	--	--

Loran A Chain

Decca Chains

No.	Chain	Chain	Area
01	SOUTH BALTIC	OA	Europe
02	VESTLANDET	OE	"
03	SOUTH WEST BRITISH	1 B	"
04	NORTHUMBRIAN	2 A	"
05	HOLLAND	2 E	"
06	NORTH BRITISH	3B	"
07	LOFOTEN	3 E	"
08		3 E	"
09	NORTH BALTIC	4B	"
10	NORTH WEST	4 C	"
11	TRONDELAG	4E	"
12	ENGLISH	5B	"
13	NORTH BOTHNIAN	5 F	"
14	SOUTHERN SPANISH	6 A	"
15	NORTH SCOTTISH	6C	"
16	GULF OF FINLAND	6E	"
17	DANISH	7B	"
18	IRISH	7D	"
19	FINNMARK	7E	"
20	FRENCH	8B	"
21	SOUTH BOTHNIAN	8C	"
22	HEBRIDEAN	8E	"
23	FRISIAN ISLAMDS	9B	"
24	HELGELAND	9 E	"
25	SKAGERRAK	10B	"
26	NORTH PERSIAN GULF	5C	Persian Gulf \& India
27	SOLTH PERSIAN GLLF	1 C	"
28	BOMBAY	7B	"
29	CALCUTTA	8B	"
30	BANGLADESH	6C	"
31	SALIYAH	2 F	"
32	HOKKAIDO	9 C	Japan
33	TOHOKL	6C	"

No.	Chain	Chain Code	Area
34	KANTO	8 C	Japan
35	SHIKOKU	4 C	$\prime \prime$
36	HOKURIKU	2 C	$\prime \prime$
37	KITA-KYUSHU	7 C	$"$
38	NAMAQUALAND	4 A	Southrn Africa
39	CAPE	6 A	$"$
40	EASTERN PROVINCE	8 A	$"$
41	SOUTH WEST AFRICA	9 C	$"$
42	NATAL	10 C	$"$
43	DAMPIER	8 E	Australia
44	PORT HEADLAND	4 A	$"$
45	ANTICOSTI	9 C	North America
46	EAST NEWFOUNDLAND	2 C	$"$
47	CABOT STRAIT	6 B	$"$
48	NOVA SCOTIA	7 C	$"$

Equipment LIst

Complete Set

Name	Type	Qty	Wt.	Remarks	
Antenna Unit	GPA-014	1	0.5		
Display Unit	GPR-016	1	4		
Installtion Materials	CP20-00900	1		For FSA	See next pages.
	CP20-00910			Except USA	
Spare Parts	SP20-00200	1 set			
Accessories	FP20-00200	1 set			

Optional Equipment

No.	Name	Type	Code No,	Remarks
1	Antenna Adaptor	OP20-14	$000-040-235$	for GPA-012
2	Rectifier	PR-62		for 110/220VAC
3	Antenna Cable Set	CP20-00600	$000-040-670$	30 m
4	Antenna Cable Set	CP20-00610	$000-040-671$	50 m
5	Flush Mount Kit	OP20-1	$004-362-070$	
6	Right Angle Mounting Base	No.13-QA300	$000-803-239$	
7	L-angle Mounting Base	No.13-QA310	$000-803-240$	
8	Variable Angle Mounting Base	No.13-QA100	$000-803-241$	
9	Modification Kit	OP20-21	$000-040-238$	for GP-500
10	Antenna Unit	GPA-012	$000-040-218$	
11	Antenna Unit	GPA-012-F	$000-040-219$	for FUSA

Equipment List

				CODE NQ	000－040－233		20AH－X－9401－1
				TYPE	CP20－00900		
	工 哥臣 材 米斗 济 INSTALLATION MATERIALS		GP－500 MARK－2	GPS航法装䦪 GPS NAVIGATOR （FOR USA问）			
	［棌号	$\begin{array}{lllll}\text { 名 } & & & & \text { 妳 } \\ N & A & M & \text { C }\end{array}$	略 OUTLINE	型 名／規 格 DESCRIPTIONS		数 量 $Q^{\prime} T Y$	用途／优考 REMARKS
	1	$\begin{aligned} & \text { Dサブコネクタ } \\ & \text { D-SUB CONNECTOR } \end{aligned}$		XM2A－1501		1	受信部用 FOR MAIN UNIT
	2	$\begin{aligned} & \text { Dサブコネクスフート" } \\ & \text { D-SUB CONNECTOR } \\ & \text { HOUSING } \end{aligned}$		XM2S－1513		1	$\begin{aligned} & \text { 父信部用 } \\ & \text { FOR MAIN } \\ & \text { UNIT } \\ & \hline \end{aligned}$
	3	ケーブルバント" CABLE CLAMP		PLF 1 M－M		5	$\begin{aligned} & \text { 受信部用 } \\ & \text { FOR MAIN } \\ & \text { UNIT } \\ & \hline \end{aligned}$
	4	アース銅板 COPPER STRAP	$\mathrm{L}=1.2 \mathrm{~m}$	$\begin{aligned} & 04 S 40801 \\ & (30 \times 1200 \times 0.3) \end{aligned}$		1	受信部用 FOR MAIN UNIT
	5	ヒュース＂貼りマーク LABEL		20－004－8002－0 CODE NQ $100-114-610$		1	受信部用 FOR MAIN UNIT
	6	ケーブル貼 りマーク LABEL		20－004－8003－0		1	受信部用 FOR MAIN UNIT
	7	信号ヶーブル組品 SIGNAL CABLE ASSY．				4	受信部用 FOR MAIN UNIT
	8	態剚コート＂ POWER CABLE		$\begin{aligned} & 2250019 \\ & \text { (VV0.75×2C *3M*) } \end{aligned}$		1	受信部用 FOR MAIN UNIT
	9	アンテナケーブル組品 ANTENNA CABLE ASSY．	$l=15 \mathrm{~m}$	BBP－3D2V		1	空中線部用 FOR ANT．UNIT
	10	絶緑テープ SELF－BONDING TAPE		$\begin{aligned} & U \bar{v}-7^{\circ} \\ & 0.5 \times 19 \times 5 \mathrm{M} \end{aligned}$		1	空中楾部用 FOR ANT．UNIT
	11	$\text { E" = ルテープNO. } 360$ VINYL TAPE				1	空中線觙用 FOR ANT．UNIT

Equipment List

				CODE NQ TYPE	000－040－234		20AH－X－9403－1	
				CP20－00910				
	工 田要 材 冰斗 或 INSTALLATION MATERIALS				GPS 肮 法 装 回 GPS NAVIGATOR			(Except USA)
		名 称 N A M E	$\begin{aligned} & \text { 略 } \\ & \text { OUTLINE } \end{aligned}$	型 名／规 格DESCRIPTIONS		$\begin{array}{\|l\|} \hline \text { 数 } \\ \text { O'TY } \\ \hline \end{array}$	用途／话考 REMARKS	
	1	$\begin{aligned} & \text { Dサブコスクタ } \\ & \text { D-SUB CONNECTOR } \end{aligned}$		XM2A－1501		1	受借觔用 FOR MAIN UNIT	
	2	Dサフ＂コネクタフート＂ D－SUB CONNECTOR HOUSING		XM2S－15	513．	1	受信邰用 FOR MAIN UNIT	
	3	ケーブルグンド CABLE CLAMP		$\begin{array}{\|l\|} \hline \text { PLF 1M- } \\ \hline \text { CODE NQ } \\ \hline \end{array}$	$000-116-921$	5	$\begin{aligned} & \text { 受俉 部 用 } \\ & \text { FOR MAIN } \\ & \text { UNIT } \end{aligned}$	
	4	$\begin{aligned} & \text { P-ス銅板 } \\ & \text { COPPER STRAP } \end{aligned}$		$\begin{array}{\|l\|} \hline 0454081 \\ 60 \times 12 \\ \hline \text { CODE Na } \\ \hline \end{array}$	$\begin{aligned} & 801 \\ & 200 \times 0.3) \\ & 000-572-187 \end{aligned}$	1	要信部用 FOR MAIN UNIT	
	5	ヒューズ貼りマーク LABEL		$20-004$	$\begin{aligned} & 4-8002-0 \\ & 100-114-610 \end{aligned}$	1	受信㿟用 FOR MAIN UNIT	
	6	ケーブル貼 りマーク LABEL		$\begin{gathered} 20-004- \\ \text { CODE Na } \end{gathered}$	$4-8003-0$ $100-114-820$	1	受信暗用 FOR MAIN UNIT	
	7	信号ヶーブル縕品 SIGNAL CABLE ASSY．	$\underbrace{}_{\text {L-5. }}$			4	受信暗用 FOR MAIN UNIT	
	8	出獂コート＂ POWER CABLE		$\begin{aligned} & 2250019 \\ & \text { CVVO. } 7! \\ & \hline \text { CODE Na } \\ & \hline \end{aligned}$	$\begin{aligned} & 19 \\ & \frac{75 \times 2(* 3 M *)}{2000-109-000} \end{aligned}$	1	受信部用 FOR MAIN UNIT	
	9	アンテナケーブ円組品 antenna cable ASSY．	L．15n	$\begin{aligned} & \text { BBP-3D } \\ & \hline \text { CODE } \mathrm{Na} \\ & \hline \end{aligned}$	$\begin{aligned} & 3 \mathrm{D} 2 \mathrm{~V} \\ & 000-134-445 \end{aligned}$	1	空中綝部用 FOR ANT．UNIT	
	10	バーカークランブ HOSE CLAMP	$14 \text { 中 }$	2672 SUS304 CODE Na	$000-803-218$	1	空中緑竧用 FOR ANT．UNIT	
	11	取付補䟞貝 INSTALLING SPACER		$20-005$ CODE NO	5－3101－0	1	空中維船四 FOR ANT．UNIT	
	12	被誛テープ SELF－BONDING TAPE		$\begin{aligned} & \begin{array}{l} U \bar{ラ}-7^{\circ} \\ 0.5 \times 19 \end{array} \\ & \hline \text { CODE Na } \end{aligned}$	$9 \times 5 \mathrm{M}$ 000－800－985	1	空的縮邵开 FOR ANT．UNIT	
	13	$\text { ヒ"ニールテープNO. } 360$ VINYL TAPE					空中炛的用 FOR ANT．UNIT	

M－TME M M

note
＊1．SHIPYARD SUPPLY．
＊2 FITTED AT FACTORY．
3 JIMP BETWEEN DTR ANO DSR IF PROVIDED
m
0
(

FOURURID

INDEX

A

Abbreviations on - screen, 2-13
Alarms
anchor watch alarm description, 6-5
arrival alarm description, 6-5
border alarm description, 6-6
cross track error alarm description, 6-5
selecting stopwatch, 6-2
selecting timer, 6-2
setting anchor watch alarm, 6-6
setting arrival alarm, 6-6
setting border alarm, 6-7
setting cross track error alarm, 6-7
setting ship's speed alarm, 6-8
setting trip, 6-8
setting audible alarm, 6-8
starting stopwatch, 6-3
starting timer, 6-4
Almanac
displaying time received, 7-11
receiving, 7-11
Anchor watch alarm
description, 6-5
setting, 6-6
Antenna unit height, 2-9
Arrival alarm
description, 6-5
setting, 6-6

B

Border alarm
description, 6-6
setting, 6-7

C

Calculate
range and bearing between two wpts, 3-17
time-to-go between two waypoints, 3-16
TTG and ETA between two points, 3-19

Cancel

destination waypoint, 3-10
route navigation, 4-11
Clear
navigation data (incl. waypoints), 7-9
navigation data plus system data, 7-9
wrong data, 2-2
Cold start, 7-11
Course error
discription, 3-14
Cross track error
description, 3-14
graphic display, 3-11
Cross track error alarm
description, 6-5
setting, 6-7

D

Decca
entering and displaying position, 5-14
entering manual LOP offset corrections, 5-15
list of chains, A-6
Default setting, 5-20
Delete
point from a route, 4-9
waypoint position information, 3-10
route contents, 4-3
Destination waypoint
canceling, 3-10
cross track error to, 3-14
range and bearing to, 3-13
selecting, 3-9
Differencial GPS
initial setting, 5-17
data receiving status, 5-19
connecting DGPS receiver, 8-20
Display
course error, 3-14
cross track error, 3-14
distance run, 3-16
DOP, noise level, 7-4
position in Decca LOPs, 5-14
position in Loran A TDs, 5-13
position in Loran C TDs, 5-12
program version no., 7-6
range and bearing to destination waypoint,
3-13
satellite receiving status, 7-4
satellite schedule, 7-5
satellite signal level, 7-4
time almanac received, 7-11
waypoint list, 3-7
DOP, 1-2
Drift, 3-15

E

Enter
antenna unit height, 2-9
automatic magnetic variation, 5-4
data, 2-6
Decca chain, 5-14
elevation angle, 2-9
estimated position, 2-8
geodetic chart correction value, 5-2
Loran A chain, 5-13
Loran C chain, 5-12
manual Decca LOP offset corrections, 5-14
manual magnetic variation, 5-4
manual Loran TD position offset
corrections, 5-14
smoothing, 5-10
waypoint by L/L, Loran TDs, or Decca
LOPs, 3-2
Equipment list, A-7
entering estimated position. 8-6
selecting back-up navigator8-7
selecting CIF format, 8-12
selecting NMEA0180S format, 8-19
selecting NMEA0183 format, 8-14, 8-18
selecting speed log and gyrocompass, 8-9

K

Keyboard, 2-2
basic operating procedures, 2-4
response conventions, 2-3
testing, 7-8

L

Loran A
entering and displaying position, 5-13
entering manual TD offset corrections, 5-14
list of chains, A-5
Loran C
entering and displaying position, 5-12
entering manual TD offset corrections, 5-14
list of chains. A-5

M

Magnetic variation
automatic, 5-4
manual, 5-4
Memory
clearing navigation data, 7-9

G

Geodetic chart
entering correction value, 5-9
selecting, 5-2
systems stored in this unit, A-4
GPS
accuracy, 1-2
almanac, 1-5
description, 1-1
how receiver finds its position, 1-1

P

Position - fixing mode selection, 2-9
Present position
converting to waypoint, 3-5
saving, 2-15
Program version no., 7-6

R

Range and bearing calculation between two waypoints, 3-17
key, 2-2
Recalling saved position, 2-17
Route navigation
canceling, 4-11
connecting routes, 4-10
creating a route, 4-2
deleting route contents, 4-3
following a route, 4-8
registering route " 00 ", $4-5$
selecting a route, 4-8
temporarily deselecting a point on a route, 4-9

S

Satellite
deselecting/reselecting, 5-15
displaying DOP, noise level, 7-4
displaying receiving status, 7-4
displaying schedule, 7-5
displaying signal level, brg, elevation angle,
$7-4$
entering mask elevation angle, 2-9
Saved position
converting to waypoint, 3-5
recalling, 2-17
Saving present position, 2-15
Self test, 7-6
Set, 3-15
Ship's speed alarm
description, 6-6
setting, 6-8
Smoothing, 5-10
Specifications, A-1
Standard display, 2-11

T

Time differences map, A-3
Time-to-go, 3-16
Trip alarm
description, 6-6
setting, 6-8
Troubleshooting
displaying program version no., 7-6
displaying sat. DOP, noise level, 7-4
displaying sat. sig. level, brg, elev. angle, 7-4
displaying time almanac received, 7-11
executing cold start, 7-11
keyboard/LCD test, 7-8
self test, 7-6
troubleshooting example, 7-2

U

Units of measurement, 5-5

V

Velocity to destination description, 3-12

W

Waypoint
calculating r/b between two waypoints, 3-17
calculating time-to-go, 3-16
canceling destination waypoint, 3-10
clearing all, 7-9
entering by L/L, Loran TDs, Decca LOPs, 3-2
entering by present position, 3-5
entering by previously saved position, 3-5
selecting destination waypoint, 3-9
waypoint list, 3-7
write-protecting waypoints, 3-4

Pub NO. DOC-229

Declaration of conformity to type

We
FURUNO ELECTRIC CO., LTD.

(Manufacturer)
9-52 Ashihara-Cho, Nishinomiya City, 662-8580, Hyogo, Japan
(Address)
hereby declare under our sole responsibility that the product
Marine GPS navigator model GP-500 MARK-2 consisting of Display unit GPR-016 and Antenna unit GPA-014
(Model names, type numbers)
to which this declaration relates conforms to the following standard(s) or normative document(s)
EN 61108-1: June 1996 (IEC 61108-1: 1996-06)
EN 61162-1: November 1995 (IEC 61162-1: 1995-11)
EN 60945: January 1997 (IEC 60945 Third edition: 1996-11)
(title and/or number and date of issue of the standard(s) or other normative document(s))

For assessment, see EC type-examination certificate N ${ }^{\circ}$ KCS/99212017/AA/00 of 3 June 1999 issued by KCS Certification, The Netherlands

This declaration is issued according to the provisions of European Council Directive 96/98/EC on marine equipment modified by Commission Directive 98/85/EC.

On behalf of Furuno Electric Co., Ltd.

Nishinomiya City, Japan
June 16, 1999
(Place and date of issue)

Hiroaki Komatsu

Manager,

International Rules and Regulations
(name and signature or equivalent marking of authorized person)

[^0]:

